Friday, September 27, 2024

AASWomen Newsletter for September 27, 2024

AAS Committee on the Status of...

Firefly offers insight on MLV testing, reusability plans

Firefly offers insight on MLV testing,...

Water Waves Break Up Floating Film

September 27, 2024• Physics 17,...

Deficiency of metabolic regulator PKM2 activates the pentose phosphate pathway and generates TCF1+ progenitor CD8+ T cells to improve immunotherapy

BiochemistryDeficiency of metabolic regulator PKM2 activates the pentose phosphate pathway and generates TCF1+ progenitor CD8+ T cells to improve immunotherapy


  • Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klebanoff, C. A., Rosenberg, S. A. & Restifo, N. P. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat. Med. 22, 26–36 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosenberg, S. A., Parkhurst, M. R. & Robbins, P. F. Adoptive cell transfer immunotherapy for patients with solid epithelial cancers. Cancer Cell 41, 646–648 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, P. & Allison, J. P. Dissecting the mechanisms of immune checkpoint therapy. Nat. Rev. Immunol. 20, 75–76 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Markowitz, G. J. et al. Immune reprogramming via PD-1 inhibition enhances early-stage lung cancer survival. JCI Insight https://doi.org/10.1172/jci.insight.96836 (2018).

  • Philip, M. & Schietinger, A. CD8(+) T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 22, 209–223 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siddiqui, I. et al. Intratumoral Tcf1(+)PD-1(+)CD8(+) T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 e110 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Miller, B. C. et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Loosdregt, J. & Coffer, P. J. The role of WNT signaling in mature T cells: T cell factor is coming home. J. Immunol. 201, 2193–2200 (2018).

    PubMed 

    Google Scholar 

  • Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15, 808–813 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Escobar, G., Mangani, D. & Anderson, A. C. T cell factor 1: a master regulator of the T cell response in disease. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abb9726 (2020).

  • Gebhardt, T., Park, S. L. & Parish, I. A. Stem-like exhausted and memory CD8(+) T cells in cancer. Nat. Rev. Cancer 23, 780–798 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1(-)CD8(+) tumor-infiltrating T cells. Immunity 50, 181–194 e186 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kishton, R. J., Sukumar, M. & Restifo, N. P. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 26, 94–109 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reina-Campos, M., Scharping, N. E. & Goldrath, A. W. CD8(+) T cell metabolism in infection and cancer. Nat. Rev. Immunol. 21, 718–738 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Windt, G. J. & Pearce, E. L. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 249, 27–42 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, R. & Green, D. R. Metabolic reprogramming and metabolic dependency in T cells. Immunol. Rev. 249, 14–26 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hermans, D. et al. Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8(+) T cell stemness and antitumor immunity. Proc. Natl Acad. Sci. USA 117, 6047–6055 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, H. et al. Transcriptome analysis of individual stromal cell populations identifies stroma-tumor crosstalk in mouse lung cancer model. Cell Rep. 10, 1187–1201 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horton, B. L. et al. Lack of CD8(+) T cell effector differentiation during priming mediates checkpoint blockade resistance in non-small cell lung cancer. Sci. Immunol. 6, eabi8800 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DuPage, M. et al. Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell 19, 72–85 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Jurica, M. S. et al. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6, 195–210 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Gattinoni, L., Powell, D. J. Jr., Rosenberg, S. A. & Restifo, N. P. Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol. 6, 383–393 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ban, Y. et al. Radiation-activated secretory proteins of Scgb1a1 (+) club cells increase the efficacy of immune checkpoint blockade in lung cancer. Nat. Cancer 2, 919–931 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luckey, C. J. et al. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc. Natl Acad. Sci. USA 103, 3304–3309 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ecker, C. et al. Differential reliance on lipid metabolism as a salvage pathway underlies functional differences of T cell subsets in poor nutrient environments. Cell Rep. 23, 741–755 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pucino, V. et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4(+) T cell metabolic rewiring. Cell Metab. 30, 1055–1074 e1058 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seki, S. M. et al. Modulation of PKM activity affects the differentiation of T(H)17 cells. Sci. Signal https://doi.org/10.1126/scisignal.aay9217 (2020).

  • Kono, M. et al. Pyruvate kinase M2 is requisite for Th1 and Th17 differentiation. JCI Insight https://doi.org/10.1172/jci.insight.127395 (2019).

  • Angiari, S. et al. Pharmacological activation of pyruvate kinase M2 inhibits CD4(+) T cell pathogenicity and suppresses autoimmunity. Cell Metab. 31, 391–405 e398 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stincone, A. et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. Camb. Philos. Soc. 90, 927–963 (2015).

    PubMed 

    Google Scholar 

  • Bouzier-Sore, A. K. & Bolanos, J. P. Uncertainties in pentose-phosphate pathway flux assessment underestimate its contribution to neuronal glucose consumption: relevance for neurodegeneration and aging. Front. Aging Neurosci. 7, 89 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jang, C., Chen, L. & Rabinowitz, J. D. Metabolomics and isotope tracing. Cell 173, 822–837 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, J., Psychogios, N., Young, N. & Wishart, D. S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37, W652–W660 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daneshmandi, S. et al. Blockade of 6-phosphogluconate dehydrogenase generates CD8(+) effector T cells with enhanced anti-tumor function. Cell Rep. 34, 108831 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghergurovich, J. M. et al. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway. Nat. Chem. Biol. 16, 731–739 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, C. et al. G6PD functions as a metabolic checkpoint to regulate granzyme B expression in tumor-specific cytotoxic T lymphocytes. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-003543 (2022).

  • Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hwang, S. et al. Correcting glucose-6-phosphate dehydrogenase deficiency with a small-molecule activator. Nat. Commun. 9, 4045 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Raub, A. G. et al. Small-molecule activators of glucose-6-phosphate dehydrogenase (G6PD) bridging the dimer interface. ChemMedChem 14, 1321–1324 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horikoshi, N. et al. Long-range structural defects by pathogenic mutations in most severe glucose-6-phosphate dehydrogenase deficiency. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2022790118 (2021).

  • Garcia, A. A. et al. Stabilization of glucose-6-phosphate dehydrogenase oligomers enhances catalytic activity and stability of clinical variants. J. Biol. Chem. 298, 101610 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Q. et al. TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat. Immunol. 16, 1044–1050 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao, C. et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8(+) T cells. Nat. Immunol. 22, 370–380 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roychoudhuri, R. et al. BACH2 regulates CD8(+) T cell differentiation by controlling access of AP-1 factors to enhancers. Nat. Immunol. 17, 851–860 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rao, R. R., Li, Q., Gubbels Bupp, M. R. & Shrikant, P. A. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation. Immunity 36, 374–387 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, M. V., Ouyang, W., Liao, W., Zhang, M. Q. & Li, M. O. The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection. Immunity 39, 286–297 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Delpoux, A., Lai, C. Y., Hedrick, S. M. & Doedens, A. L. FOXO1 opposition of CD8(+) T cell effector programming confers early memory properties and phenotypic diversity. Proc. Natl Acad. Sci. USA 114, E8865–E8874 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Podaza, E. et al. Novel co-culture strategies of tumor organoids with autologous T-cells reveal clinically relevant combinations of immune-checkpoint and targeted therapies. Preprint at bioRxiv https://doi.org/10.1101/2023.07.05.546622 (2023).

  • Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598 e1512 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, J. et al. Simplified method of the growth of human tumor infiltrating lymphocytes in gas-permeable flasks to numbers needed for patient treatment. J. Immunother. 35, 283–292 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Toriyama, K. et al. T cell-specific deletion of Pgam1 reveals a critical role for glycolysis in T cell responses. Commun. Biol. 3, 394 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siska, P. J. et al. Suppression of Glut1 and glucose metabolism by decreased Akt/mTORC1 signaling drives T cell impairment in B Cell leukemia. J. Immunol. 197, 2532–2540 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gemta, L. F. et al. Impaired enolase 1 glycolytic activity restrains effector functions of tumor-infiltrating CD8(+) T cells. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aap9520 (2019).

  • Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Telang, S. et al. Small molecule inhibition of 6-phosphofructo-2-kinase suppresses T cell activation. J. Transl. Med. 10, 95 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quinn, W. J. et al. Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep. 33, 108500 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mehta, M. M. et al. Hexokinase 2 is dispensable for T cell-dependent immunity. Cancer Metab. 6, 10 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu, M. et al. NF-κB-inducing kinase maintains T cell metabolic fitness in antitumor immunity. Nat. Immunol. 22, 193–204 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, R. et al. A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8(+) T cells. Nat. Cell Biol. 20, 21–27 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8(+) T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Shan, Q. et al. Tcf1 preprograms the mobilization of glycolysis in central memory CD8(+) T cells during recall responses. Nat. Immunol. 23, 386–398 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, S. et al. PKM2-dependent metabolic reprogramming in CD4(+) T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. J. Mol. Med. 96, 585–600 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Walls, J. F. et al. Metabolic but not transcriptional regulation by PKM2 is important for natural killer cell responses. eLife https://doi.org/10.7554/eLife.59166 (2020).

  • Kahan, S. M. et al. Intrinsic IL-2 production by effector CD8 T cells affects IL-2 signaling and promotes fate decisions, stemness, and protection. Sci. Immunol. 7, eabl6322 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ji, Y. et al. Identification of the genomic insertion site of Pmel-1 TCR α and β transgenes by next-generation sequencing. PLoS ONE 9, e96650 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Overwijk, W. W. et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198, 569–580 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, K., Marran, K., Valentine, A. & Hannon, G. J. Packaging shRNA retroviruses. Cold Spring Harb. Protoc. 2013, 734–737 (2013).

    PubMed 

    Google Scholar 

  • Jacobi, A. M. et al. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Methods 121, 16–28 (2017).

    PubMed 

    Google Scholar 

  • Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team. R: A Language and environment for statistical computing (R Foundation for Statistical Computing, 2022).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016).

  • Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durinck, S. et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21, 3439–3440 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Korotkevic, G., Sukhov, V. & Sergushichev, A. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2019).

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Andrews, S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

  • Blighe, K., Rana, S. & Lewis, M. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. GitHub https://github.com/kevinblighe/EnhancedVolcano (2018).

  • Chen, W. W., Freinkman, E., Wang, T., Birsoy, K. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337 e1311 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pauli, C. et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462–477 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Check out our other content

    Most Popular Articles