Kalpana, D. et al. Green biosynthesis of silver nanoparticles using Torreya nucifera and their antibacterial activity. Arab. J. Chem. 12, 1722–1732 (2019).
Google Scholar
Mathur, P., Jha, S., Ramteke, S. & Jain, N. Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 46, 115–126 (2018).
Google Scholar
Ali, S. et al. Advancements and challenges in phytochemical-mediated silver nanoparticles for food packaging: Recent review (2021–2023). Trends Food Sci. Technol 104197 (2023).
Kowalczyk, P. et al. All that glitters is not silver—A new look at microbiological and medical applications of silver nanoparticles. Int. J. Mol. Sci. 22, 854 (2021).
Google Scholar
Repon, M. R. et al. Development of antimicrobial cotton fabric impregnating AgNPs utilizing contemporary practice. Coatings 11, 1413 (2021).
Google Scholar
Mondéjar-López, M. et al. Biogenic silver nanoparticles from iris tuberosa as potential preservative in cosmetic products. Molecules 26, 4696 (2021).
Google Scholar
Francis, S., Koshy, E. & Mathew, B. Microwave aided synthesis of silver and gold nanoparticles and their antioxidant, antimicrobial and catalytic potentials. J. Nanostruct. 8, 55–66 (2018).
Kim, J. H., Park, H. & Seo, S. W. In situ synthesis of silver nanoparticles on the surface of PDMS with high antibacterial activity and biosafety toward an implantable medical device. Nano Convergence 4, 33 (2017).
Google Scholar
Vijayaraj, R. et al. In Micro. 912–929 (MDPI).
Solanki, P., Ansari, D. & Sultana, Y. Nanostructured carrageenan as drug carrier. Nanoeng. Biomater. 523–542 (2022).
Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2, 107–118 (2007).
Google Scholar
Jana, J., Ganguly, M. & Pal, T. Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv. 6, 86174–86211 (2016).
Google Scholar
Delgado-Beleño, Y., Martinez-Nuñez, C., Cortez-Valadez, M., Flores-López, N. & Flores-Acosta, M. Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications. Mater. Res. Bull. 99, 385–392 (2018).
Google Scholar
Daoudi, W. et al. Carbon dots nanoparticles: A promising breakthrough in biosensing, catalysis, biomedical and authers applications. Nano-Struct. Nano-Objects 37, 101074 (2024).
Google Scholar
Khalil, S. et al. Antibacterial, antioxidant and photocatalytic activity of novel Rubus ellipticus leaf mediated silver nanoparticles. J. Saudi Chem. Soc. 27, 101576 (2023).
Google Scholar
Azeez, L., Lateef, A. & Adebisi, S. A. Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Appl. Nanosci. 7, 59–66 (2017).
Google Scholar
Kumar, H. et al. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials 10, 1334 (2020).
Google Scholar
Das, G., Patra, J. K., Debnath, T., Ansari, A. & Shin, H.-S. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS ONE 14, e0220950 (2019).
Google Scholar
Shukla, S. K., Khan, A. & Rao, T. S. In Microbial and Natural Macromolecules 589–622 (Elsevier, 2021).
Aragaw, T. A., Bogale, F. M. & Aragaw, B. A. Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. J. Saudi Chem. Soc. 25, 101280 (2021).
Google Scholar
Abbas, Q. et al. Biochar-induced immobilization and transformation of silver-nanoparticles affect growth, intracellular-radicles generation and nutrients assimilation by reducing oxidative stress in maize. J. Hazard. Mater. 390, 121976 (2020).
Google Scholar
Jamkhande, P. G., Ghule, N. W., Bamer, A. H. & Kalaskar, M. G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 53, 101174 (2019).
Google Scholar
Villaseñor, M. J. & Ríos, Á. Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry. Environ. Chem. Lett. 16, 11–34 (2018).
Google Scholar
Roy, N., Gaur, A., Jain, A., Bhattacharya, S. & Rani, V. Green synthesis of silver nanoparticles: An approach to overcome toxicity. Environ. Toxicol. Pharmacol. 36, 807–812 (2013).
Google Scholar
Sheldon, R. A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 19, 18–43 (2017).
Google Scholar
Ullah, A. & Lim, S. I. Plant extract-based synthesis of metallic nanomaterials, their applications, and safety concerns. Biotechnol. Bioeng. 119, 2273–2304 (2022).
Google Scholar
Gogoi, B., Kumar, R., Upadhyay, J. & Borah, D. Facile biogenic synthesis of silver nanoparticles (AgNPs) by Citrus grandis (L.) Osbeck fruit extract with excellent antimicrobial potential against plant pathogens. SN Appl. Sci. 2, 1723 (2020).
Google Scholar
Hussain, M. et al. Green synthesis and evaluation of silver nanoparticles for antimicrobial and biochemical profiling in Kinnow (Citrus reticulata L.) to enhance fruit quality and productivity under biotic stress. IET Nanobiotechnol. 13, 250–256 (2019).
Google Scholar
Yadav, J. & Chauhan, P. Green synthesis of silver nanoparticles using Citrus X sinensis (Orange) fruit extract and assessment of their catalytic reduction. Mater. Today Proc. 62, 6177–6181 (2022).
Google Scholar
Chowdhury, R. A., Dhar, S. A., Das, S., Nahian, M. K. & Qadir, M. R. Green synthesis and characterization of silver nanoparticles from the aqueous extract of the leaves of Citrus aurantifolia. Mater. Today Proc. 44, 1039–1042 (2021).
Google Scholar
Rasool, M., Rasool, M.H., Khurshid, M. & Aslam, B. Biogenic synthesis and characterization of silver nanoparticles: exploring antioxidant and anti-inflammatory activities and assessing antimicrobial potential against multidrug-resistant bacteria. Asian J. Agric. Biol. 2024(3), 2023364. https://doi.org/10.35495/ajab.2023.364 (2024).
Chandhirasekar, K. et al. Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica. Mater. Lett. 287, 129265 (2021).
Google Scholar
Chen, F., Zheng, Q., Li, X. & Xiong, J. Citrus sinensis leaf aqueous extract green-synthesized silver nanoparticles: Characterization and cytotoxicity, antioxidant, and anti-human lung carcinoma effects. Arab. J. Chem. 15, 103845 (2022).
Google Scholar
Ringwal, S., Bartwal, A. S. & Sati, S. C. Photo-catalytic degradation of different toxic dyes using silver nanoparticles as photo-catalyst, mediated via Citrus aurantium peels extract. J. Indian Chem. Soc. 98, 100221 (2021).
Google Scholar
Saratale, R. G. et al. Exploiting fruit byproducts for eco-friendly nanosynthesis: Citrus× clementina peel extract mediated fabrication of silver nanoparticles with high efficacy against microbial pathogens and rat glial tumor C6 cells. Environ. Sci. Pollut. Res. 25, 10250–10263 (2018).
Google Scholar
Dutta, T. et al. Green synthesis of antibacterial and antifungal silver nanoparticles using Citrus limetta peel extract: Experimental and theoretical studies. J. Environ. Chem. Eng. 8, 104019 (2020).
Google Scholar
Alkhulaifi, M. M. et al. Green synthesis of silver nanoparticles using Citrus limon peels and evaluation of their antibacterial and cytotoxic properties. Saudi J. Biol. Sci. 27, 3434–3441 (2020).
Google Scholar
Sati, S., Bartwal, A. S. & Agarwal, A. K. Green synthesis of silver nanoparticles from Citrus medica peels and determination of its antioxidant activity (2020).
Mahmood, Q., Shaheen, S. & Azeem, M. Nanobiosensors: application in healthcare, environmental monitoring and food safety. Asian J. Agric. Biol. 2024(1), 2023157. https://doi.org/10.35495/ajab.2023.157 (2023).
Google Scholar
Basavegowda, N. & Lee, Y. R. Synthesis of silver nanoparticles using Satsuma mandarin (Citrus unshiu) peel extract: A novel approach towards waste utilization. Mater. Lett. 109, 31–33 (2013).
Google Scholar
Alsakhawy, S. A., Baghdadi, H. H., El-Shenawy, M. A. & El-Hosseiny, L. S. Antibacterial activity of silver nanoparticles phytosynthesized by citrus fruit peel extracts. BioNanoScience 12, 1106–1115 (2022).
Google Scholar
Ahmed, S., Kaur, G., Sharma, P., Singh, S. & Ikram, S. Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities. J. Appl. Biomed. 16, 221–231 (2018).
Google Scholar
Niluxsshun, M. C. D., Masilamani, K. & Mathiventhan, U. Green synthesis of silver nanoparticles from the extracts of fruit peel of Citrus tangerina, Citrus sinensis, and Citrus limon for antibacterial activities. Bioinorg. Chem. Appl. 2021, 6695734 (2021).
Google Scholar
Saha, P., Mahiuddin, M., Islam, A. N. & Ochiai, B. Biogenic synthesis and catalytic efficacy of silver nanoparticles based on peel extracts of citrus macroptera fruit. ACS Omega 6, 18260–18268 (2021).
Google Scholar
Ayinde, W., Gitari, W. & Samie, A. Optimization of microwave-assisted synthesis of silver nanoparticle by Citrus paradisi peel and its application against pathogenic water strain. Green Chem. Lett. Rev. 12, 225–234 (2019).
Google Scholar
Şahin, M., Arslan, Y., Tomul, F., Yıldırım, B. & Genç, H. Green synthesis of silver nanoparticles using Lathyrus brachypterus extract for efficient catalytic reduction of methylene blue, methyl orange, methyl red and investigation of a kinetic model. React. Kinetics Mech. Catal. 135, 3303–3315 (2022).
Google Scholar
Amjad, U.-E.-S., Sherin, L., Zafar, M. F. & Mustafa, M. Comparative study on the catalytic degradation of methyl orange by silver nanoparticles synthesized by solution combustion and green synthesis method. Arab. J. Sci. Eng. 44, 9851–9857 (2019).
Google Scholar
Hosnedlova, B. et al. Effect of biosynthesized silver nanoparticles on bacterial biofilm changes in S. aureus and E. coli. Nanomaterials 12, 2183 (2022).
Google Scholar
Tian, S. et al. Green synthesis of silver nanoparticles using sodium alginate and tannic acid: Characterization and anti-S. aureus activity. Int. J. Biol. Macromol. 195, 515–522 (2022).
Google Scholar
Sinsinwar, S. & Vadivel, V. Catechin isolated from cashew nut shell exhibits antibacterial activity against clinical isolates of MRSA through ROS-mediated oxidative stress. Appl. Microbiol. Biotechnol. 104, 8279–8297 (2020).
Google Scholar
Somasundaram, C. K. et al. Sustainable synthesis of silver nanoparticles using marine algae for catalytic degradation of methylene blue. Catalysts 11, 1377 (2021).
Google Scholar
Shahid, M. et al. Biofilm inhibition and antibacterial potential of different varieties of garlic (Allium sativum) against sinusitis isolates. Dose-Response 19, 15593258211050492 (2021).
Google Scholar
Naseem, Z., Zahid, M., Hanif, M. A. & Shahid, M. Environmentally friendly extraction of bioactive compounds from Mentha arvensis using deep eutectic solvent as green extraction media. Polish J. Environ. Stud. 29, 3749–3757 (2020).
Google Scholar
Kumar, V. et al. Green synthesis of silver nanoparticle for the selective and sensitive colorimetric detection of mercury(II) ion. J. Photochem. Photobiol. B Biol. 168, 67–77 (2017).
Google Scholar
Kadam, J., Dhawal, P., Barve, S. & Kakodkar, S. Green synthesis of silver nanoparticles using cauliflower waste and their multifaceted applications in photocatalytic degradation of methylene blue dye and Hg 2+ biosensing. SN Appl. Sci. 2, 1–16 (2020).
Google Scholar
Elgamouz, A. et al. Green synthesis, characterization, antimicrobial, anticancer, and optimization of colorimetric sensing of hydrogen peroxide of algae extract capped silver nanoparticles. Nanomaterials 10, 1861 (2020).
Google Scholar
Hashemi, Z., Shirzadi-Ahodashti, M., Mortazavi-Derazkola, S. & Ebrahimzadeh, M. A. Sustainable biosynthesis of metallic silver nanoparticles using barberry phenolic extract: Optimization and evaluation of photocatalytic, in vitro cytotoxicity, and antibacterial activities against multidrug-resistant bacteria. Inorg. Chem. Commun. 139, 109320 (2022).
Google Scholar
Jameel, M. S., Aziz, A. A. & Dheyab, M. A. Green synthesis: Proposed mechanism and factors influencing the synthesis of platinum nanoparticles. Green Process. Synth. 9, 386–398 (2020).
Google Scholar
Huo, C., Khoshnamvand, M., Liu, P., Yuan, C.-G. & Cao, W. Eco-friendly approach for biosynthesis of silver nanoparticles using Citrus maxima peel extract and their characterization, catalytic, antioxidant and antimicrobial characteristics. Mater. Res. Express 6, 015010 (2018).
Google Scholar
Halawani, E. M. Rapid biosynthesis method and characterization of silver nanoparticles using Zizyphus spina christi leaf extract and their antibacterial efficacy in therapeutic application. J. Biomater. Nanobiotechnol. 8, 22–35 (2016).
Google Scholar
Ali, F., Khan, S. B., Kamal, T., Alamry, K. A. & Asiri, A. M. Chitosan-titanium oxide fibers supported zero-valent nanoparticles: Highly efficient and easily retrievable catalyst for the removal of organic pollutants. Sci. Rep. 8, 6260 (2018).
Google Scholar
Bui, T. H., et al. Green synthesis of nanosilver decorated on ceria nanorod for the catalytic reduction of methyl orange. Arab. J. Sci. Eng. 1–11 (2023).
Bui, T. H., et al. Green synthesis of nanosilver decorated on ceria nanorod for the catalytic reduction of methyl orange. Arab. J. Sci. Eng. 1–11 (2023).
Naseem, K. et al. Investigation of catalytic potential of sodium dodecyl sulfate stabilized silver nanoparticles for the degradation of methyl orange dye. J. Mol. Struct. 1262, 132996 (2022).
Google Scholar
Aroob, S. et al. Green synthesis and photocatalytic dye degradation activity of CuO nanoparticles. Catalysts 13, 502 (2023).
Google Scholar
Bedlovičová, Z., Strapáč, I., Baláž, M. & Salayová, A. A brief overview on antioxidant activity determination of silver nanoparticles. Molecules 25, 3191 (2020).
Google Scholar
Singh, S., Kumar, V., Romero, R., Sharma, K. & Singh, J. Applications of nanoparticles in wastewater treatment. Nanobiotechnol. Bioformul. 395–418 (2019).
Pham-Huy, L. A., He, H. & Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 4, 89 (2008).
Google Scholar