Friday, November 29, 2024

How to Pop a Microscopic Cork

Author(s): Charles DayResearchers used machine learning...

A Nearby Supernova Could Finally Reveal Mark Matter

Despite 90 years of research, the...

Phase separation and ageing of glycine-rich protein from tick adhesive

BiochemistryPhase separation and ageing of glycine-rich protein from tick adhesive


  • Smith A. M. & Callow J. A. Biological Adhesives Vol. 23 (Springer, 2006).

  • Hennebert, E., Maldonado, B., Ladurner, P., Flammang, P. & Santos, R. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review. Interface Focus 5, 20140064 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stewart, R. J., Wang, C. S., Song, I. T. & Jones, J. P. The role of coacervation and phase transitions in the sandcastle worm adhesive system. Adv. Colloid Interface Sci. 239, 88–96 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Waite, J. H. Mussel adhesion–essential footwork. J. Exp. Biol. 220, 517–530 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baer, A., Schmidt, S., Mayer, G. & Harrington, M. J. Fibers on the fly: multiscale mechanisms of fiber formation in the capture slime of velvet worms. Integr. Comp. Biol. 59, 1690–1699 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Jongejan, F. & Uilenberg, G. The global importance of ticks. Parasitology 129, S3–S14 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Bullard, R., Sharma, S. R., Das, P. K., Morgan, S. E. & Karim, S. Repurposing of glycine-rich proteins in abiotic and biotic stresses in the Lone-Star tick (Amblyomma americanum). Front. Physiol. 10, 459485 (2019).

    Article 

    Google Scholar 

  • Wikel, S. K. Host immunity to ticks. Annu. Rev. Entomol. 41, 1–22 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eisen, L. Pathogen transmission in relation to duration of attachment by Ixodes scapularis ticks. Ticks Tick Borne Dis. 9, 535–542 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kugeler, K. J., Schwartz, A. M., Delorey, M. J., Mead, P. S. & Hinckley, A. F. Estimating the frequency of Lyme disease diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 27, 616–619 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suppan, J., Engel, B., Marchetti‐Deschmann, M. & Nürnberger, S. Tick attachment cement—reviewing the mysteries of a biological skin plug system. Biol. Rev. 93, 1056–1076 (2018).

  • Gregson, J. D. Observations on the movement of fluids in the vicinity of the mouthparts of naturally feeding Dermacentor andersoni Stiles. Parasitology 57, 1–8 (1967).

    Article 

    Google Scholar 

  • Kemp, D., Stone, B. & Binnington, K. Tick attachment and feeding: role of the mouthparts, feeding apparatus, salivary gland secretions and the host response. Physiol. Ticks 1982, 119–168 (1982).

    Article 

    Google Scholar 

  • Trimnell, A. R., Davies, G. M., Lissina, O., Hails, R. S. & Nuttall, P. A. A cross-reactive tick cement antigen is a candidate broad-spectrum tick vaccine. Vaccine 23, 4329–4341 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Francischetti, I. M., Sa-Nunes, A., Mans, B. J., Santos, I. M. & Ribeiro, J. M. The role of saliva in tick feeding. Front. Biosci. 14, 2051–2088 (2009).

    PubMed Central 

    Google Scholar 

  • Nuttall, P. Wonders of tick saliva. Ticks Tick Borne Dis. 10, 470–481 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ribeiro, J. M. et al. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem. Mol. Biol. 36, 111–129 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maruyama, S. R. et al. The expression of genes coding for distinct types of glycine-rich proteins varies according to the biology of three metastriate ticks, Rhipicephalus (Boophilus) microplus, Rhipicephalus sanguineus and Amblyomma cajennense. BMC Genomics 11, 363 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bullard, R., Allen, P., Chao, C.-C., Douglas, J. & Das, P. K. Structural characterization of tick cement cones collected from in vivo and artificial membrane blood-fed Lone Star ticks (Ambylomma americanum). Ticks Tick Borne Dis 7, 880–892 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Šimo, L., Kazimirova, M., Richardson, J. & Bonnet, S. I. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front. Cell. Infect. Microbiol. 7, 281 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hollmann, T. et al. Identification and characterization of proteins in the Amblyomma americanum tick cement cone. Int. J. Parasitol. 48, 211–224 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

  • Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, U. B., Sanabria, H., Smirnova, T., Bowen, M. E. & Weninger, K. R. Spontaneous switching among conformational ensembles in intrinsically disordered proteins. Biomolecules 9, 114 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Article 
    CAS 

    Google Scholar 

  • Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

  • Abbas, M., Lipiński, W. P., Wang, J. & Spruijt, E. Peptide-based coacervates as biomimetic protocells. Chem. Soc. Rev. 50, 3690–3705 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deshpande, S. & Dekker, C. Studying phase separation in confinement. Curr. Opin. Colloid Interface Sci. 52, 101419 (2021).

    Article 
    CAS 

    Google Scholar 

  • Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Shen, Y. et al. Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nat. Nanotechnol. 15, 841–847 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohammadi, P. et al. Controllable coacervation of recombinantly produced spider silk protein using kosmotropic salts. J. Colloid Interface Sci. 560, 149–160 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kar, M., Posey, A. E., Dar, F., Hyman, A. A. & Pappu, R. V. Glycine-rich peptides from FUS have an intrinsic ability to self-assemble into fibers and networked fibrils: published as part of the Biochemistry virtual special issue ‘Protein Condensates’. Biochemistry 60, 3213–3222 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stewart, R. J., Wang, C. S. & Shao, H. Complex coacervates as a foundation for synthetic underwater adhesives. Adv. Colloid Interface Sci. 167, 85–93 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99–132 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winkler, S. & Kaplan, D. L. Molecular biology of spider silk. Rev. Mol. Biotechnol. 74, 85–93 (2000).

    Article 
    CAS 

    Google Scholar 

  • Haritos, V. S. et al. Harnessing disorder: onychophorans use highly unstructured proteins, not silks, for prey capture. Proc. R. Soc. B Biol. Sci. 277, 3255–3263 (2010).

    Article 
    CAS 

    Google Scholar 

  • Kim, S. et al. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels. Proc. Natl Acad. Sci. USA 113, E847–E853 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchan, D. W. & Jones, D. T. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 47, W402–W407 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mészáros, B., Erdős, G. & Dosztányi, Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 46, W329–W337 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. & Pappu, R. V. CIDER: resources to analyze sequence–ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21 (2017).

  • Ji, Y., Li, F. & Qiao, Y. Modulating liquid–liquid phase separation of FUS: mechanisms and strategies. J. Mater. Chem. B 10, 8616–8628 (2022).

  • Cascarina, S. M. & Ross, E. D. Phase separation by the SARS-CoV-2 nucleocapsid protein: consensus and open questions. J. Biol. Chem. 298, 101677 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gelderblom, H., Diddens, C. & Marin, A. Evaporation-driven liquid flow in sessile droplets. Soft Matter 18, 8535–8553 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rebane, A. A. et al. Liquid–liquid phase separation of the Golgi matrix protein GM130. FEBS Lett. 594, 1132–1144 (2020).

  • Berthier, J. & Brakke, K. A. The Physics of Microdroplets (Wiley, 2012).

  • Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alshareedah, I., Kaur, T. & Banerjee, P. R. Methods for characterizing the material properties of biomolecular condensates. Methods Enzymol 646, 143–183 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e616 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abbas, M., Lipiński, W. P., Nakashima, K. K., Huck, W. T. & Spruijt, E. A short peptide synthon for liquid–liquid phase separation. Nat. Chem. 13, 1046–1054 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mecozzi, S., West, A. P. Jr & Dougherty, D. A. Cation–π interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc. Natl Acad. Sci. USA 93, 10566–10571 (1996).

  • Mahadevi, A. S. & Sastry, G. N. Cation–π interaction: its role and relevance in chemistry, biology and material science. Chem. Rev. 113, 2100–2138 (2013).

  • Hong, Y. et al. Hydrophobicity of arginine leads to reentrant liquid–liquid phase separation behaviors of arginine-rich proteins. Nat. Commun. 13, 7326 (2022).

  • Sagle, L. B. et al. Investigating the hydrogen-bonding model of urea denaturation. J. Am. Chem. Soc. 131, 9304–9310 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lim, J. et al. Liquid–liquid phase separation of short histidine- and tyrosine-rich peptides: sequence specificity and molecular topology. J. Phys. Chem. B 125, 6776–6790 (2021).

  • Lin, Y. et al. Liquid–liquid phase separation of tau driven by hydrophobic interaction facilitates fibrillization of tau. J. Mol. Biol. 433, 166731 (2021).

  • Bowman, A. S. & Sauer, J. Tick salivary glands: function, physiology and future. Parasitology 129, S67–S81 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Ribeiro, J. M. & Mans, B. J. TickSialoFam (TSFam): a database that helps to classify tick salivary proteins, a review on tick salivary protein function and evolution, with considerations on the tick sialome switching phenomenon. Front. Cell. Infect. Microbiol. 10, 374 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lo Nostro, P. & Ninham, B. W. Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112, 2286–2322 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. & Cremer, P. S. Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10, 658–663 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bouzetos, E., Ganar, K. A., Mastrobattista, E., Deshpande, S. & van der Oost, J. (R)evolution-on-a-chip. Trends Biotechnol. 40, 60–76 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aarts, D. G., Schmidt, M. & Lekkerkerker, H. N. Direct visual observation of thermal capillary waves. Science 304, 847–850 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lynn, G. E. et al. Immunization of guinea pigs with cement extract induces resistance against Ixodes scapularis ticks. Ticks Tick Borne Dis. 13, 102017 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Hofman, A. H., van Hees, I. A., Yang, J. & Kamperman, M. Bioinspired underwater adhesives by using the supramolecular toolbox. Adv. Mater. 30, 1704640 (2018).

    Article 

    Google Scholar 

  • Lu, Y. et al. Complete sequences of the velvet worm slime proteins reveal that slime formation is enabled by disulfide bonds and intrinsically disordered regions. Adv. Sci. 9, 2201444 (2022).

    Article 
    CAS 

    Google Scholar 

  • Guo, Q. et al. Hydrogen-bonds mediate liquid–liquid phase separation of mussel derived adhesive peptides. Nat. Commun. 13, 5771 (2022).

  • Villar, M. et al. Characterization of tick salivary gland and saliva alphagalactome reveals candidate alpha-gal syndrome disease biomarkers. Expert Rev. Proteomics 18, 1099–1116 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Agwunobi, D. O. et al. Phosphoproteomic analysis of Haemaphysalis longicornis saliva reveals the influential contributions of phosphoproteins to blood-feeding success. Front. Cell. Infect. Microbiol. 11, 769026 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. Comprehensive analysis of the global protein changes that occur during salivary gland degeneration in female ixodid ticks Haemaphysalis longicornis. Front. Physiol. 9, 1943 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, A. R., Fletcher, J. D. & Gill, H. S. Structural and histochemical changes in the salivary glands of Rhipicephalus appendiculatus during feeding. Int. J. Parasitol. 15, 81–100 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sauer, J., McSwain, J., Bowman, A. & Essenberg, R. Tick salivary gland physiology. Annu. Rev. Entomol. 40, 245–267 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de la Fuente, J., Estrada-Peña, A., Venzal, J. M., Kocan, K. M. & Sonenshine, D. E. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13, 6938–6946 (2008).

    Article 
    PubMed 

    Google Scholar 

  • de la Fuente, J. Translational biotechnology for the control of ticks and tick-borne diseases. Ticks Tick Borne Dis 12, 101738 (2021).

    Article 
    PubMed 

    Google Scholar 

  • de la Fuente, J. Controlling ticks and tick-borne diseases… looking forward. Ticks Tick Borne Dis. 9, 1354–1357 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Bhowmick, B. & Han, Q. Understanding tick biology and its implications in anti-tick and transmission blocking vaccines against tick-borne pathogens. Front. Vet. Sci. 7, 319 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bishop, R. et al. A cement protein of the tick Rhipicephalus appendiculatus, located in the secretory e cell granules of the type III salivary gland acini, induces strong antibody responses in cattle. Int. J. Parasitol. 32, 833–842 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trimnell, A. R., Hails, R. S. & Nuttall, P. A. Dual action ectoparasite vaccine targeting ‘exposed’ and ‘concealed’ antigens. Vaccine 20, 3560–3568 (2002).

  • Zhou, J., Gong, H., Zhou, Y., Xuan, X. & Fujisaki, K. Identification of a glycine-rich protein from the tick Rhipicephalus haemaphysaloides and evaluation of its vaccine potential against tick feeding. Parasitol. Res. 100, 77–84 (2006).

  • Liu, J., Spruijt, E., Miserez, A. & Langer, R. Peptide-based liquid droplets as emerging delivery vehicles. Nat. Rev. Mater. 8, 139–141 (2023).

    Article 
    CAS 

    Google Scholar 

  • Ganar, K. A., Leijten, L. & Deshpande, S. Actinosomes: condensate-templated containers for engineering synthetic cells. ACS Synth. Biol. 11, 2869–2879 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, C., Ganar, K. A. & Deshpande, S. On-chip octanol-assisted liposome assembly for bioengineering. J. Vis. Exp. 10.3791/65032 (2023).

  • Poudyal, R. R. et al. Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates. Nat. Commun. 10, 490 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fleming, P. J. & Fleming, K. G. HullRad: fast calculations of folded and disordered protein and nucleic acid hydrodynamic properties. Biophys. J. 114, 856–869 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salomon, J., Hamer, S. A. & Swei, A. A beginner’s guide to collecting questing hard ticks (Acari: Ixodidae): a standardized tick dragging protocol. J. Insect Sci. 20, 11 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sonenshine, D. E. & Roe, R. M. Biology of Ticks Vol. 2 (Oxford Univ. Press, 2014).

  • Patton, T. G. et al. Saliva, salivary gland and hemolymph collection from Ixodes scapularis ticks. J. Vis. Exp. 10.3791/3894 (2012).

  • Ganar, K. A. et al. Phase separation and ageing of glycine-rich protein from tick adhesive. figshare https://doi.org/10.6084/m9.figshare.26490541 (2024).

  • Check out our other content

    Most Popular Articles