Smith A. M. & Callow J. A. Biological Adhesives Vol. 23 (Springer, 2006).
Hennebert, E., Maldonado, B., Ladurner, P., Flammang, P. & Santos, R. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review. Interface Focus 5, 20140064 (2015).
Google Scholar
Stewart, R. J., Wang, C. S., Song, I. T. & Jones, J. P. The role of coacervation and phase transitions in the sandcastle worm adhesive system. Adv. Colloid Interface Sci. 239, 88–96 (2017).
Google Scholar
Waite, J. H. Mussel adhesion–essential footwork. J. Exp. Biol. 220, 517–530 (2017).
Google Scholar
Baer, A., Schmidt, S., Mayer, G. & Harrington, M. J. Fibers on the fly: multiscale mechanisms of fiber formation in the capture slime of velvet worms. Integr. Comp. Biol. 59, 1690–1699 (2019).
Google Scholar
Jongejan, F. & Uilenberg, G. The global importance of ticks. Parasitology 129, S3–S14 (2004).
Google Scholar
Bullard, R., Sharma, S. R., Das, P. K., Morgan, S. E. & Karim, S. Repurposing of glycine-rich proteins in abiotic and biotic stresses in the Lone-Star tick (Amblyomma americanum). Front. Physiol. 10, 459485 (2019).
Google Scholar
Wikel, S. K. Host immunity to ticks. Annu. Rev. Entomol. 41, 1–22 (1996).
Google Scholar
Eisen, L. Pathogen transmission in relation to duration of attachment by Ixodes scapularis ticks. Ticks Tick Borne Dis. 9, 535–542 (2018).
Google Scholar
Kugeler, K. J., Schwartz, A. M., Delorey, M. J., Mead, P. S. & Hinckley, A. F. Estimating the frequency of Lyme disease diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 27, 616–619 (2021).
Google Scholar
Suppan, J., Engel, B., Marchetti‐Deschmann, M. & Nürnberger, S. Tick attachment cement—reviewing the mysteries of a biological skin plug system. Biol. Rev. 93, 1056–1076 (2018).
Gregson, J. D. Observations on the movement of fluids in the vicinity of the mouthparts of naturally feeding Dermacentor andersoni Stiles. Parasitology 57, 1–8 (1967).
Google Scholar
Kemp, D., Stone, B. & Binnington, K. Tick attachment and feeding: role of the mouthparts, feeding apparatus, salivary gland secretions and the host response. Physiol. Ticks 1982, 119–168 (1982).
Google Scholar
Trimnell, A. R., Davies, G. M., Lissina, O., Hails, R. S. & Nuttall, P. A. A cross-reactive tick cement antigen is a candidate broad-spectrum tick vaccine. Vaccine 23, 4329–4341 (2005).
Google Scholar
Francischetti, I. M., Sa-Nunes, A., Mans, B. J., Santos, I. M. & Ribeiro, J. M. The role of saliva in tick feeding. Front. Biosci. 14, 2051–2088 (2009).
Google Scholar
Nuttall, P. Wonders of tick saliva. Ticks Tick Borne Dis. 10, 470–481 (2019).
Google Scholar
Ribeiro, J. M. et al. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem. Mol. Biol. 36, 111–129 (2006).
Google Scholar
Maruyama, S. R. et al. The expression of genes coding for distinct types of glycine-rich proteins varies according to the biology of three metastriate ticks, Rhipicephalus (Boophilus) microplus, Rhipicephalus sanguineus and Amblyomma cajennense. BMC Genomics 11, 363 (2010).
Google Scholar
Bullard, R., Allen, P., Chao, C.-C., Douglas, J. & Das, P. K. Structural characterization of tick cement cones collected from in vivo and artificial membrane blood-fed Lone Star ticks (Ambylomma americanum). Ticks Tick Borne Dis 7, 880–892 (2016).
Google Scholar
Šimo, L., Kazimirova, M., Richardson, J. & Bonnet, S. I. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front. Cell. Infect. Microbiol. 7, 281 (2017).
Google Scholar
Hollmann, T. et al. Identification and characterization of proteins in the Amblyomma americanum tick cement cone. Int. J. Parasitol. 48, 211–224 (2018).
Google Scholar
Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).
Google Scholar
Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).
Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).
Google Scholar
Choi, U. B., Sanabria, H., Smirnova, T., Bowen, M. E. & Weninger, K. R. Spontaneous switching among conformational ensembles in intrinsically disordered proteins. Biomolecules 9, 114 (2019).
Google Scholar
Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).
Google Scholar
Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).
Abbas, M., Lipiński, W. P., Wang, J. & Spruijt, E. Peptide-based coacervates as biomimetic protocells. Chem. Soc. Rev. 50, 3690–3705 (2021).
Google Scholar
Deshpande, S. & Dekker, C. Studying phase separation in confinement. Curr. Opin. Colloid Interface Sci. 52, 101419 (2021).
Google Scholar
Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
Google Scholar
Shen, Y. et al. Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nat. Nanotechnol. 15, 841–847 (2020).
Google Scholar
Mohammadi, P. et al. Controllable coacervation of recombinantly produced spider silk protein using kosmotropic salts. J. Colloid Interface Sci. 560, 149–160 (2020).
Google Scholar
Kar, M., Posey, A. E., Dar, F., Hyman, A. A. & Pappu, R. V. Glycine-rich peptides from FUS have an intrinsic ability to self-assemble into fibers and networked fibrils: published as part of the Biochemistry virtual special issue ‘Protein Condensates’. Biochemistry 60, 3213–3222 (2021).
Google Scholar
Stewart, R. J., Wang, C. S. & Shao, H. Complex coacervates as a foundation for synthetic underwater adhesives. Adv. Colloid Interface Sci. 167, 85–93 (2011).
Google Scholar
Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99–132 (2011).
Google Scholar
Winkler, S. & Kaplan, D. L. Molecular biology of spider silk. Rev. Mol. Biotechnol. 74, 85–93 (2000).
Google Scholar
Haritos, V. S. et al. Harnessing disorder: onychophorans use highly unstructured proteins, not silks, for prey capture. Proc. R. Soc. B Biol. Sci. 277, 3255–3263 (2010).
Google Scholar
Kim, S. et al. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels. Proc. Natl Acad. Sci. USA 113, E847–E853 (2016).
Google Scholar
Buchan, D. W. & Jones, D. T. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 47, W402–W407 (2019).
Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Google Scholar
Mészáros, B., Erdős, G. & Dosztányi, Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 46, W329–W337 (2018).
Google Scholar
Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. & Pappu, R. V. CIDER: resources to analyze sequence–ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21 (2017).
Ji, Y., Li, F. & Qiao, Y. Modulating liquid–liquid phase separation of FUS: mechanisms and strategies. J. Mater. Chem. B 10, 8616–8628 (2022).
Cascarina, S. M. & Ross, E. D. Phase separation by the SARS-CoV-2 nucleocapsid protein: consensus and open questions. J. Biol. Chem. 298, 101677 (2022).
Google Scholar
Gelderblom, H., Diddens, C. & Marin, A. Evaporation-driven liquid flow in sessile droplets. Soft Matter 18, 8535–8553 (2022).
Google Scholar
Rebane, A. A. et al. Liquid–liquid phase separation of the Golgi matrix protein GM130. FEBS Lett. 594, 1132–1144 (2020).
Berthier, J. & Brakke, K. A. The Physics of Microdroplets (Wiley, 2012).
Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).
Google Scholar
Alshareedah, I., Kaur, T. & Banerjee, P. R. Methods for characterizing the material properties of biomolecular condensates. Methods Enzymol 646, 143–183 (2021).
Google Scholar
Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e616 (2018).
Google Scholar
Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).
Google Scholar
Abbas, M., Lipiński, W. P., Nakashima, K. K., Huck, W. T. & Spruijt, E. A short peptide synthon for liquid–liquid phase separation. Nat. Chem. 13, 1046–1054 (2021).
Google Scholar
Mecozzi, S., West, A. P. Jr & Dougherty, D. A. Cation–π interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc. Natl Acad. Sci. USA 93, 10566–10571 (1996).
Mahadevi, A. S. & Sastry, G. N. Cation–π interaction: its role and relevance in chemistry, biology and material science. Chem. Rev. 113, 2100–2138 (2013).
Hong, Y. et al. Hydrophobicity of arginine leads to reentrant liquid–liquid phase separation behaviors of arginine-rich proteins. Nat. Commun. 13, 7326 (2022).
Sagle, L. B. et al. Investigating the hydrogen-bonding model of urea denaturation. J. Am. Chem. Soc. 131, 9304–9310 (2009).
Google Scholar
Lim, J. et al. Liquid–liquid phase separation of short histidine- and tyrosine-rich peptides: sequence specificity and molecular topology. J. Phys. Chem. B 125, 6776–6790 (2021).
Lin, Y. et al. Liquid–liquid phase separation of tau driven by hydrophobic interaction facilitates fibrillization of tau. J. Mol. Biol. 433, 166731 (2021).
Bowman, A. S. & Sauer, J. Tick salivary glands: function, physiology and future. Parasitology 129, S67–S81 (2004).
Google Scholar
Ribeiro, J. M. & Mans, B. J. TickSialoFam (TSFam): a database that helps to classify tick salivary proteins, a review on tick salivary protein function and evolution, with considerations on the tick sialome switching phenomenon. Front. Cell. Infect. Microbiol. 10, 374 (2020).
Google Scholar
Lo Nostro, P. & Ninham, B. W. Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112, 2286–2322 (2012).
Google Scholar
Zhang, Y. & Cremer, P. S. Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10, 658–663 (2006).
Google Scholar
Bouzetos, E., Ganar, K. A., Mastrobattista, E., Deshpande, S. & van der Oost, J. (R)evolution-on-a-chip. Trends Biotechnol. 40, 60–76 (2022).
Google Scholar
Aarts, D. G., Schmidt, M. & Lekkerkerker, H. N. Direct visual observation of thermal capillary waves. Science 304, 847–850 (2004).
Google Scholar
Lynn, G. E. et al. Immunization of guinea pigs with cement extract induces resistance against Ixodes scapularis ticks. Ticks Tick Borne Dis. 13, 102017 (2022).
Google Scholar
Hofman, A. H., van Hees, I. A., Yang, J. & Kamperman, M. Bioinspired underwater adhesives by using the supramolecular toolbox. Adv. Mater. 30, 1704640 (2018).
Google Scholar
Lu, Y. et al. Complete sequences of the velvet worm slime proteins reveal that slime formation is enabled by disulfide bonds and intrinsically disordered regions. Adv. Sci. 9, 2201444 (2022).
Google Scholar
Guo, Q. et al. Hydrogen-bonds mediate liquid–liquid phase separation of mussel derived adhesive peptides. Nat. Commun. 13, 5771 (2022).
Villar, M. et al. Characterization of tick salivary gland and saliva alphagalactome reveals candidate alpha-gal syndrome disease biomarkers. Expert Rev. Proteomics 18, 1099–1116 (2021).
Google Scholar
Agwunobi, D. O. et al. Phosphoproteomic analysis of Haemaphysalis longicornis saliva reveals the influential contributions of phosphoproteins to blood-feeding success. Front. Cell. Infect. Microbiol. 11, 769026 (2022).
Google Scholar
Wang, H. et al. Comprehensive analysis of the global protein changes that occur during salivary gland degeneration in female ixodid ticks Haemaphysalis longicornis. Front. Physiol. 9, 1943 (2019).
Google Scholar
Walker, A. R., Fletcher, J. D. & Gill, H. S. Structural and histochemical changes in the salivary glands of Rhipicephalus appendiculatus during feeding. Int. J. Parasitol. 15, 81–100 (1985).
Google Scholar
Sauer, J., McSwain, J., Bowman, A. & Essenberg, R. Tick salivary gland physiology. Annu. Rev. Entomol. 40, 245–267 (1995).
Google Scholar
de la Fuente, J., Estrada-Peña, A., Venzal, J. M., Kocan, K. M. & Sonenshine, D. E. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13, 6938–6946 (2008).
Google Scholar
de la Fuente, J. Translational biotechnology for the control of ticks and tick-borne diseases. Ticks Tick Borne Dis 12, 101738 (2021).
Google Scholar
de la Fuente, J. Controlling ticks and tick-borne diseases… looking forward. Ticks Tick Borne Dis. 9, 1354–1357 (2018).
Google Scholar
Bhowmick, B. & Han, Q. Understanding tick biology and its implications in anti-tick and transmission blocking vaccines against tick-borne pathogens. Front. Vet. Sci. 7, 319 (2020).
Google Scholar
Bishop, R. et al. A cement protein of the tick Rhipicephalus appendiculatus, located in the secretory e cell granules of the type III salivary gland acini, induces strong antibody responses in cattle. Int. J. Parasitol. 32, 833–842 (2002).
Google Scholar
Trimnell, A. R., Hails, R. S. & Nuttall, P. A. Dual action ectoparasite vaccine targeting ‘exposed’ and ‘concealed’ antigens. Vaccine 20, 3560–3568 (2002).
Zhou, J., Gong, H., Zhou, Y., Xuan, X. & Fujisaki, K. Identification of a glycine-rich protein from the tick Rhipicephalus haemaphysaloides and evaluation of its vaccine potential against tick feeding. Parasitol. Res. 100, 77–84 (2006).
Liu, J., Spruijt, E., Miserez, A. & Langer, R. Peptide-based liquid droplets as emerging delivery vehicles. Nat. Rev. Mater. 8, 139–141 (2023).
Google Scholar
Ganar, K. A., Leijten, L. & Deshpande, S. Actinosomes: condensate-templated containers for engineering synthetic cells. ACS Synth. Biol. 11, 2869–2879 (2022).
Google Scholar
Chen, C., Ganar, K. A. & Deshpande, S. On-chip octanol-assisted liposome assembly for bioengineering. J. Vis. Exp. 10.3791/65032 (2023).
Poudyal, R. R. et al. Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates. Nat. Commun. 10, 490 (2019).
Google Scholar
Fleming, P. J. & Fleming, K. G. HullRad: fast calculations of folded and disordered protein and nucleic acid hydrodynamic properties. Biophys. J. 114, 856–869 (2018).
Google Scholar
Salomon, J., Hamer, S. A. & Swei, A. A beginner’s guide to collecting questing hard ticks (Acari: Ixodidae): a standardized tick dragging protocol. J. Insect Sci. 20, 11 (2020).
Google Scholar
Sonenshine, D. E. & Roe, R. M. Biology of Ticks Vol. 2 (Oxford Univ. Press, 2014).
Patton, T. G. et al. Saliva, salivary gland and hemolymph collection from Ixodes scapularis ticks. J. Vis. Exp. 10.3791/3894 (2012).
Ganar, K. A. et al. Phase separation and ageing of glycine-rich protein from tick adhesive. figshare https://doi.org/10.6084/m9.figshare.26490541 (2024).