Harbeck, N. et al. Breast cancer. Nat. Rev. Dis. Primers. 5, 66 (2019) https://doi.org/10.1038/s41572-019-0111-2
Google Scholar
Pakizehkar, S., Ranji, N., Sohi, N., Sadeghizadeh, M. & A. & Curcumin loaded PEG400-OA nanoparticles: a suitable system to increase apoptosis, decrease migration, and deregulate miR-125b/miR182 in MDA-MB-231 human breast cancer cells. Polym. Adv. Technol. 31, 1793–1804 (2020) https://doi.org/10.1002/pat.4906
Google Scholar
Jaiswal, P. et al. A molecular link between diabetes and breast Cancer: therapeutic potential of repurposing incretin-based therapies for breast Cancer. Curr. Cancer Drug Targets. 21, 829–848 (2021) https://doi.org/10.2174/1568009621666210901101851
Google Scholar
Sung, H. et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021) https://doi.org/10.3322/caac.21660
Google Scholar
Ahmad, A. Breast Cancer statistics: recent trends. Adv. Exp. Med. Biol. 1152, 1–7 (2019) https://doi.org/10.1007/978-3-030-20301-6_1
Google Scholar
DeSantis, C. E. et al. Breast cancer statistics, 2019. CA Cancer J. Clin. 69, 438–451 (2019) https://doi.org/10.3322/caac.21583
Google Scholar
Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018) https://doi.org/10.1016/j.cell.2018.01.029
Google Scholar
Kim, C. K., He, P., Bialkowska, A. B. & Yang, V. W. SP and KLF Transcription Factors in Digestive Physiology and diseases. Gastroenterology 152, 1845–1875 (2017) https://doi.org/10.1053/j.gastro.2017.03.035
Google Scholar
Tetreault, M. P., Yang, Y. & Katz, J. P. Kruppel-like factors in cancer. Nat. Rev. Cancer. 13, 701–713 (2013) https://doi.org/10.1038/nrc3582
Google Scholar
Li, K. et al. ZNF32 protects against oxidative stress-induced apoptosis by modulating C1QBP transcription. Oncotarget 6, 38107–38126 (2015) https://doi.org/10.18632/oncotarget.5646
Google Scholar
Li, Y. et al. ZNF32 inhibits autophagy through the mTOR pathway and protects MCF-7 cells from stimulus-induced cell death. Sci. Rep. 5, 9288 (2015) https://doi.org/10.1038/srep09288
Google Scholar
Gao, B. et al. Zinc finger protein 637 protects cells against oxidative stress-induced premature senescence by mTERT-mediated telomerase activity and telomere maintenance. Cell. Death Dis. 5, e1334 (2014) https://doi.org/10.1038/cddis.2014.298
Google Scholar
Li, J. et al. ZNF32 contributes to the induction of multidrug resistance by regulating TGF-beta receptor 2 signaling in lung adenocarcinoma. Cell. Death Dis. 7, e2428 (2016) https://doi.org/10.1038/cddis.2016.328
Google Scholar
Lee, Y. T., Tan, Y. J. & Oon, C. E. Molecular targeted therapy: treating cancer with specificity. Eur. J. Pharmacol. 834, 188–196 (2018) https://doi.org/10.1016/j.ejphar.2018.07.034
Google Scholar
Dong, B. & Zhu, Y. M. Molecular-targeted therapy for cancer. Chin. J. cancer. 29, 340–345 (2010) https://doi.org/10.5732/cjc.009.10313
Google Scholar
Sun, W. et al. Dmrt1 is required for primary male sexual differentiation in Chinese soft-shelled turtle Pelodiscus sinensis. Sci. Rep. 7, 4433 (2017) https://doi.org/10.1038/s41598-017-04938-5
Google Scholar
Qu, H. et al. 1,25(OH)(2) D(3) improves cardiac dysfunction, hypertrophy, and fibrosis through PARP1/SIRT1/mTOR-related mechanisms in type 1 diabetes. Mol. Nutr. Food Res. 61 https://doi.org/10.1002/mnfr.201600338 (2017).
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods. 5, 621–628 (2008) https://doi.org/10.1038/nmeth.1226
Google Scholar
Audic, S. & Claverie, J. M. The significance of digital gene expression profiles. Genome Res. 7, 986–995 (1997) https://doi.org/10.1101/gr.7.10.986
Google Scholar
Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14 (2010) https://doi.org/10.1186/gb-2010-11-2-r14
Google Scholar
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000) https://doi.org/10.1093/nar/28.1.27
Google Scholar
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019) https://doi.org/10.1002/pro.3715
Google Scholar
Santarpia, L., Lippman, S. M. & El-Naggar, A. K. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin. Ther. Targets. 16, 103–119 (2012) https://doi.org/10.1517/14728222.2011.645805
Google Scholar
Fang, J. Y. & Richardson, B. C. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 6, 322–327 (2005) https://doi.org/10.1016/s1470-2045(05)70168-6
Google Scholar
Asl, E. R. et al. Interplay between MAPK/ERK signaling pathway and MicroRNAs: a crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 278, 119499 (2021) https://doi.org/10.1016/j.lfs.2021.119499
Google Scholar
Wei, Y. et al. Loss of ZNF32 augments the regeneration of nervous lateral line system through negative regulation of SOX2 transcription. Oncotarget 7, 70420–70436 (2016) https://doi.org/10.18632/oncotarget.11895
Google Scholar
Macheret, M. & Halazonetis, T. D. DNA replication stress as a hallmark of cancer. Annu. Rev. Pathol. 10, 425–448 (2015) https://doi.org/10.1146/annurev-pathol-012414-040424
Google Scholar
Krieghoff-Henning, E., Folkerts, J. & Penzkofer, A. Weg-Remers, S. Cancer – an overview. Med. Monatsschr. Pharm. 40, 48–54 (2017).
Google Scholar
Currie, E., Schulze, A., Zechner, R., Walther, T. C. & Farese, R. V. Jr. Cellular fatty acid metabolism and cancer. Cell. Metab. 18, 153–161 (2013) https://doi.org/10.1016/j.cmet.2013.05.017
Google Scholar
Weigelt, B. & Peterse, J. L. T veer, L. J. Breast cancer metastasis: markers and models. Nat. Rev. Cancer. 5, 591–602. https://doi.org/10.1038/nrc1670 (2005). van.
Google Scholar
Scully, O. J., Bay, B. H., Yip, G. & Yu, Y. Breast cancer metastasis. Cancer Genomics Proteom. 9, 311–320 (2012).
Dickreuter, E. & Cordes, N. The cancer cell adhesion resistome: mechanisms, targeting and translational approaches. Biol. Chem. 398, 721–735 (2017) https://doi.org/10.1515/hsz-2016-0326
Google Scholar
Li, Y. et al. Zinc finger protein 32 promotes breast cancer stem cell-like properties through directly promoting GPER transcription. Cell. Death Dis. 9, 1162 (2018) https://doi.org/10.1038/s41419-018-1144-2
Google Scholar
Li, Z. et al. Carbonic anhydrase 9 confers resistance to ferroptosis/apoptosis in malignant mesothelioma under hypoxia. Redox Biol. 26, 101297 (2019) https://doi.org/10.1016/j.redox.2019.101297
Google Scholar
Qin, M., Liu, Q., Yang, W., Wang, Q. & Xiang, Z. IGFL2-AS1-induced suppression of HIF-1α degradation promotes cell proliferation and invasion in colorectal cancer by upregulating CA9. Cancer Med. 12, 8415–8432 (2023) https://doi.org/10.1002/cam4.5562
Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011) https://doi.org/10.1016/j.cell.2011.02.013
Google Scholar
Webb, D. J., Parsons, J. T. & Horwitz, A. F. Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nat. Cell Biol. 4, E97–100 (2002) https://doi.org/10.1038/ncb0402-e97
Google Scholar
Becker, H. M. Carbonic anhydrase IX and acid transport in cancer. Br. J. Cancer. 122, 157–167 (2020) https://doi.org/10.1038/s41416-019-0642-z
Google Scholar
Janoniene, A., Mazutis, L., Matulis, D. & Petrikaite, V. Inhibition of Carbonic anhydrase IX suppresses breast Cancer cell motility at the single-cell level. Int. J. Mol. Sci. 22 https://doi.org/10.3390/ijms222111571 (2021).
Koroknai, V. et al. DNA hypermethylation is associated with invasive phenotype of malignant melanoma. Exp. Dermatol. 29, 39–50 (2020) https://doi.org/10.1111/exd.14047
Google Scholar
Yu, S. T. et al. CRLF1 promotes malignant phenotypes of papillary thyroid carcinoma by activating the MAPK/ERK and PI3K/AKT pathways. Cell. Death Dis. 9, 371 (2018) https://doi.org/10.1038/s41419-018-0352-0
Google Scholar
Li, Y. et al. Mir-3065-3p promotes stemness and metastasis by targeting CRLF1 in colorectal cancer. J. Transl Med. 19, 429 (2021) https://doi.org/10.1186/s12967-021-03102-y
Google Scholar
Xiao, P. et al. Trefoil factors: gastrointestinal-specific proteins associated with gastric cancer. Clin. Chim. Acta. 450, 127–134 (2015) https://doi.org/10.1016/j.cca.2015.08.004
Google Scholar
Zhang, S., Zhao, J., Bai, X., Handley, M. & Shan, F. Biological effects of IL-15 on immune cells and its potential for the treatment of cancer. Int. Immunopharmacol. 91, 107318 (2021) https://doi.org/10.1016/j.intimp.2020.107318
Google Scholar
Kansler, E. R. et al. Cytotoxic innate lymphoid cells sense cancer cell-expressed interleukin-15 to suppress human and murine malignancies. Nat. Immunol. 23, 904–915 (2022) https://doi.org/10.1038/s41590-022-01213-2
Google Scholar
Yang, H. et al. A four-gene signature for prognosis in breast cancer patients with hypermethylated IL15RA. Oncol. Lett. 17, 4245–4254 (2019) https://doi.org/10.3892/ol.2019.10137
Google Scholar
Zhang, W. et al. Crosstalk between IL-15Rα(+) tumor-associated macrophages and breast cancer cells reduces CD8(+) T cell recruitment. Cancer Commun. (Lond). 42, 536–557 (2022) https://doi.org/10.1002/cac2.12311
Google Scholar
Batra, S. A. et al. Glypican-3-Specific CAR T cells coexpressing IL15 and IL21 have Superior Expansion and Antitumor Activity against Hepatocellular Carcinoma. Cancer Immunol. Res. 8, 309–320 (2020) https://doi.org/10.1158/2326-6066.Cir-19-0293
Google Scholar
Chen, D. D. et al. microRNA-33a prevents epithelial-mesenchymal transition, invasion, and metastasis of gastric cancer cells through the Snail/Slug pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G147–g160 (2019) https://doi.org/10.1152/ajpgi.00284.2018
Google Scholar
Drosouni, A., Panagopoulou, M., Aidinis, V. & Chatzaki, E. Autotaxin in breast Cancer: role, epigenetic regulation and clinical implications. Cancers (Basel). 14 (2022) https://doi.org/10.3390/cancers14215437
Liu, S. et al. Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell. 15, 539–550 (2009) https://doi.org/10.1016/j.ccr.2009.03.027
Google Scholar
Peyruchaud, O., Saier, L. & Leblanc, R. Autotaxin Implication in Cancer Metastasis and Autoimunne disorders: functional implication of binding autotaxin to the cell surface. Cancers (Basel). 12 https://doi.org/10.3390/cancers12010105 (2019).
Quan, M., Cui, J. J., Feng, X. & Huang, Q. The critical role and potential target of the autotaxin/lysophosphatidate axis in pancreatic cancer. Tumour Biol. 39, 1010428317694544 (2017) https://doi.org/10.1177/1010428317694544
Google Scholar
Wang, Y., Lyu, L., Zhang, X. & Zhang, J. Autotaxin is a novel target of microRNA-101-3p. FEBS Open. Bio. 9, 707–716 (2019) https://doi.org/10.1002/2211-5463.12608
Google Scholar
Chen, C., Ye, L., Yi, J., Liu, T. & Li, Z. FN1 mediated activation of aspartate metabolism promotes the progression of triple-negative and luminal a breast cancer. Breast Cancer Res. Treat. 201, 515–533 (2023) https://doi.org/10.1007/s10549-023-07032-9
Google Scholar
Han, Y. H. et al. Identification of Hub Genes and Upstream Regulatory Factors based on cell adhesion in Triple-negative breast Cancer by Integrated Bioinformatical Analysis. Anticancer Res. 43, 2951–2964 (2023) https://doi.org/10.21873/anticanres.16466
Google Scholar
Navarro, N. et al. Integrin alpha9 emerges as a key therapeutic target to reduce metastasis in rhabdomyosarcoma and neuroblastoma. Cell. Mol. Life Sci. 79, 546 (2022) https://doi.org/10.1007/s00018-022-04557-y
Google Scholar
Zheng, J. et al. p21-activated kinase 6 controls mitosis and hepatocellular carcinoma progression by regulating Eg5. Biochim. Biophys. Acta Mol. Cell. Res. 1868, 118888 (2021) https://doi.org/10.1016/j.bbamcr.2020.118888
Google Scholar
Kaur, R., Yuan, X., Lu, M. L. & Balk, S. P. Increased PAK6 expression in prostate cancer and identification of PAK6 associated proteins. Prostate 68, 1510–1516 (2008) https://doi.org/10.1002/pros.20787
Google Scholar
Wells, C. M. & Jones, G. E. The emerging importance of group II PAKs. Biochem. J. 425, 465–473 (2010) https://doi.org/10.1042/bj20091173
Google Scholar
Yang, Q. et al. PAK6 promotes cervical cancer progression through activation of the Wnt/β-catenin signaling pathway. Oncol. Lett. 20, 2387–2395 (2020) https://doi.org/10.3892/ol.2020.11797
Google Scholar
Huang, W. et al. PAK6 promotes homologous-recombination to enhance chemoresistance to oxaliplatin through ATR/CHK1 signaling in gastric cancer. Cell. Death Dis. 13, 658 (2022) https://doi.org/10.1038/s41419-022-05118-8
Google Scholar
Dang, Y. et al. Systemic analysis of the expression and prognostic significance of PAKs in breast cancer. Genomics 112, 2433–2444 (2020) https://doi.org/10.1016/j.ygeno.2020.01.016
Google Scholar
Morse, E. M. et al. PAK6 targets to cell-cell adhesions through its N-terminus in a Cdc42-dependent manner to drive epithelial colony escape. J. Cell. Sci. 129, 380–393 (2016) https://doi.org/10.1242/jcs.177493
Google Scholar
Dzobo, K. et al. Advances in therapeutic targeting of Cancer Stem cells within the Tumor Microenvironment: an updated review. Cells 9 https://doi.org/10.3390/cells9081896 (2020).
Yadav, A. K. & Desai, N. S. Cancer Stem cells: Acquisition, characteristics, therapeutic implications, targeting strategies and future prospects. Stem Cell. Rev. Rep. 15, 331–355 (2019) https://doi.org/10.1007/s12015-019-09887-2
Google Scholar
Mai, Y., Su, J., Yang, C., Xia, C. & Fu, L. The strategies to cure cancer patients by eradicating cancer stem-like cells. Mol. Cancer. 22, 171 (2023) https://doi.org/10.1186/s12943-023-01867-y
Google Scholar
Kapoor-Narula, U. & Lenka, N. Cancer stem cells and tumor heterogeneity: deciphering the role in tumor progression and metastasis. Cytokine 157, 155968 (2022) https://doi.org/10.1016/j.cyto.2022.155968
Google Scholar
Najafi, M., Farhood, B. & Mortezaee, K. Cancer stem cells (CSCs) in cancer progression and therapy. J. Cell. Physiol. 234, 8381–8395 (2019) https://doi.org/10.1002/jcp.27740
Google Scholar