Kerfeld, C. A., Aussignargues, C., Zarzycki, J., Cai, F. & Sutter, M. Bacterial microcompartments. Nat. Rev. Microbiol. 16, 277–290 (2018).
Google Scholar
Sutter, M., Melnicki, M. R., Schulz, F., Woyke, T. & Kerfeld, C. A. A catalog of the diversity and ubiquity of bacterial microcompartments. Nat. Commun. 12, 3809 (2021).
Google Scholar
Chowdhury, C., Sinha, S., Chun, S., Yeates, T. O. & Bobik, T. A. Diverse bacterial microcompartment organelles. Microbiol. Mol. Biol. Rev. 78, 438–468 (2014).
Google Scholar
Rae, B. D., Long, B. M., Badger, M. R. & Price, G. D. Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol. Mol. Biol. Rev. 77, 357–379 (2013).
Google Scholar
Jakobson, C. M., Tullman-Ercek, D., Slininger, M. F. & Mangan, N. M. A systems-level model reveals that 1,2-Propanediol utilization microcompartments enhance pathway flux through intermediate sequestration. PLoS Comput. Biol. 13, e1005525 (2017).
Google Scholar
Kerfeld, C. A. et al. Protein structures forming the shell of primitive bacterial organelles. Science 309, 936–938 (2005).
Google Scholar
Klein, M. G. et al. Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport. J. Mol. Biol. 392, 319–333 (2009).
Google Scholar
Sutter, M., Greber, B., Aussignargues, C. & Kerfeld, C. A. Assembly principles and structure of a 6.5-MDa bacterial microcompartment shell. Science 356, 1293–1297 (2017).
Google Scholar
Greber, B. J., Sutter, M. & Kerfeld, C. A. The plasticity of molecular interactions governs bacterial microcompartment shell assembly. Structure 27, 749–763.e4 (2019).
Google Scholar
Tanaka, S. et al. Atomic-level models of the bacterial carboxysome shell. Science 319, 1083–1086 (2008).
Google Scholar
Cannon, G. C. & Shively, J. M. Characterization of a homogenous preparation of carboxysomes from Thiobacillus neapolitanus. Arch. Microbiol. 134, 52–59 (1983).
Google Scholar
Shively, J. M., Ball, F., Brown, D. H. & Saunders, R. E. Functional organelles in prokaryotes: polyhedral inclusions (Carboxysomes) of Thiobacillus neapolitanus. Science 182, 584–586 (1973).
Google Scholar
Jorda, J., Lopez, D., Wheatley, N. M. & Yeates, T. O. Using comparative genomics to uncover new kinds of protein‐based metabolic organelles in bacteria. Protein Sci. 22, 179–195 (2013).
Google Scholar
Axen, S. D., Erbilgin, O. & Kerfeld, C. A. A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput. Biol. 10, e1003898 (2014).
Google Scholar
Kerfeld, C. A. & Erbilgin, O. Bacterial microcompartments and the modular construction of microbial metabolism. Trends Microbiol. 23, 22–34 (2015).
Google Scholar
Erbilgin, O., Sutter, M. & Kerfeld, C. A. The structural basis of coenzyme a recycling in a bacterial organelle. PLoS Biol. 14, e1002399 (2016).
Google Scholar
Penrod, J. T. & Roth, J. R. Conserving a volatile metabolite: a role for carboxysome-like organelles in Salmonella enterica. J. Bacteriol. 188, 2865–2874 (2006).
Google Scholar
Havemann, G. D., Sampson, E. M. & Bobik, T. A. PduA is a shell protein of polyhedral organelles involved in coenzyme B12 -dependent degradation of 1,2-propanediol in Salmonella enterica Serovar Typhimurium LT2. J. Bacteriol. 184, 1253–1261 (2002).
Google Scholar
Rondon, M. R., Horswill, A. R. & Escalante-Semerena, J. C. DNA polymerase I function is required for the utilization of ethanolamine, 1,2-propanediol, and propionate by Salmonella typhimurium LT2. J. Bacteriol. 177, 7119–7124 (1995).
Google Scholar
Sampson, E. M. & Bobik, T. A. Microcompartments for B 12 -dependent 1,2-propanediol degradation provide protection from DNA and cellular damage by a reactive metabolic intermediate. J. Bacteriol. 190, 2966–2971 (2008).
Google Scholar
Fan, C. et al. Short N-terminal sequences package proteins into bacterial microcompartments. Proc. Natl. Acad. Sci. USA 107, 7509–7514 (2010).
Google Scholar
Fan, C. & Bobik, T. A. The N-terminal region of the medium subunit (PduD) packages adenosylcobalamin-dependent diol dehydratase (PduCDE) into the Pdu microcompartment. J. Bacteriol. 193, 5623–5628 (2011).
Google Scholar
Kinney, J. N., Salmeen, A., Cai, F. & Kerfeld, C. A. Elucidating essential role of conserved carboxysomal protein CcmN reveals common feature of bacterial microcompartment assembly. J. Biol. Chem. 287, 17729–17736 (2012).
Google Scholar
Aussignargues, C., Paasch, B. C., Gonzalez-Esquer, R., Erbilgin, O. & Kerfeld, C. A. Bacterial microcompartment assembly: the key role of encapsulation peptides. Commun. Integr. Biol. 8, e1039755 (2015).
Google Scholar
Liu, Y. et al. PduL is an evolutionarily distinct phosphotransacylase involved in B12 -dependent 1,2-propanediol degradation by Salmonella enterica Serovar Typhimurium LT2. J. Bacteriol. 189, 1589–1596 (2007).
Google Scholar
Gu, S., Bradley-Clarke, J., Rose, R.-S., Warren, M. J. & Pickersgill, R. W. Enzyme-cargo encapsulation peptides bind between tessellating tiles of the bacterial microcompartment shell. J. Biol. Chem. 300, 107357 (2024).
Google Scholar
Sutter, M. & Kerfeld, C. A. BMC Caller: a webtool to identify and analyze bacterial microcompartment types in sequence data. Biol. Direct 17, 9 (2022).
Google Scholar
Chen, I.-M. A. et al. The IMG/M data management and analysis system v.7: content updates and new features. Nucleic Acids Res. 51, D723–D732 (2023).
Google Scholar
Nielsen, K. M., Johnsen, P. J., Bensasson, D. & Daffonchio, D. Release and persistence of extracellular DNA in the environment. Environ. Biosaf. Res. 6, 37–53 (2007).
Google Scholar
Levy-Booth, D. J. et al. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 39, 2977–2991 (2007).
Google Scholar
Lomax, M. S. & Greenberg, G. R. Characteristics of the deo operon: role in thymine utilization and sensitivity to deoxyribonucleosides. J. Bacteriol. 96, 501–514 (1968).
Google Scholar
Jørgensen, P., Collins, J. & Valentin-Hansen, P. On the structure of the deo operon of Escherichia coli. Mol. Gen. Genet. 155, 93–102 (1977).
Google Scholar
Melnicki, M. R., Sutter, M. & Kerfeld, C. A. Evolutionary relationships among shell proteins of carboxysomes and metabolosomes. Curr. Opin. Microbiol. 63, 1–9 (2021).
Google Scholar
Sutter, M. et al. Electrochemical cofactor recycling of bacterial microcompartments. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2414220121 (2024).
Fillenberg, S. B., Grau, F. C., Seidel, G. & Muller, Y. A. Structural insight into operator dre-sites recognition and effector binding in the GntR/HutC transcription regulator NagR. Nucleic Acids Res. 43, 1283–1296 (2015).
Google Scholar
Matilla, M. A., Velando, F., Martín-Mora, D., Monteagudo-Cascales, E. & Krell, T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol. Rev. 46, fuab043 (2022).
Google Scholar
Heine, A., Luz, J. G., Wong, C.-H. & Wilson, I. A. Analysis of the class I aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase at 0.99 Å resolution. J. Mol. Biol. 343, 1019–1034 (2004).
Google Scholar
Zhang, R.-G. et al. The 2.2Å resolution structure of RpiB/AlsB from Escherichia coli illustrates a new approach to the ribose-5-phosphate isomerase reaction. J. Mol. Biol. 332, 1083–1094 (2003).
Google Scholar
Valentin‐Hansen, P., Boëtius, F., Hammer‐Jespersen, K. & Svendsen, I. The primary structure of Escherichia coli K12 2‐deoxyribose 5‐phosphate aldolase: nucleotide sequence of the deoC gene and the amino acid sequence of the enzyme. Eur. J. Biochem. 125, 561–566 (1982).
Google Scholar
Sarkar, D. et al. Atomic view of photosynthetic metabolite permeability pathways and confinement in synthetic carboxysome shells. Proc. Natl. Acad. Sci. USA 121, e2402277121 (2024).
Cai, F. et al. The structure of CcmP, a tandem bacterial microcompartment domain protein from the β-carboxysome, forms a subcompartment within a microcompartment. J. Biol. Chem. 288, 16055–16063 (2013).
Google Scholar
Larsson, A. M., Hasse, D., Valegård, K. & Andersson, I. Crystal structures of β-carboxysome shell protein CcmP: ligand binding correlates with the closed or open central pore. J. Exp. Bot. 68, 3857–3867 (2017).
Google Scholar
Zhang, R. et al. Structure of Escherichia coli ribose-5-phosphate isomerase. Structure 11, 31–42 (2003).
Google Scholar
Chen, J., Wu, H., Zhang, W. & Mu, W. Ribose-5-phosphate isomerases: characteristics, structural features, and applications. Appl Microbiol. Biotechnol. 104, 6429–6441 (2020).
Google Scholar
Roos, A. K. et al. Mycobacterium tuberculosis Ribose-5-phosphate Isomerase has a known fold, but a novel active site. J. Mol. Biol. 335, 799–809 (2004).
Google Scholar
Stern, A. L., Naworyta, A., Cazzulo, J. J. & Mowbray, S. L. Structures of type B ribose 5‐phosphate isomerase from Trypanosoma cruzi shed light on the determinants of sugar specificity in the structural family. FEBS J. 278, 793–808 (2011).
Google Scholar
Sharkey, T. D. Pentose phosphate pathway reactions in photosynthesizing cells. Cells 10, 1547 (2021).
Google Scholar
Petit, E. et al. Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by Clostridium phytofermentans. PLoS ONE 8, e54337 (2013).
Google Scholar
Zarzycki, J., Erbilgin, O. & Kerfeld, C. A. Bioinformatic characterization of glycyl radical enzyme-associated bacterial microcompartments. Appl. Environ. Microbiol. 81, 8315–8329 (2015).
Google Scholar
Cameron, J. C., Wilson, S. C., Bernstein, S. L. & Kerfeld, C. A. Biogenesis of a bacterial organelle: the carboxysome assembly pathway. Cell 155, 1131–1140 (2013).
Google Scholar
Cot, S. S.-W., So, A. K.-C. & Espie, G. S. A multiprotein bicarbonate dehydration complex essential to carboxysome function in cyanobacteria. J. Bacteriol. 190, 936–945 (2008).
Google Scholar
Borden, J. S. & Savage, D. F. New discoveries expand possibilities for carboxysome engineering. Curr. Opin. Microbiol. 61, 58–66 (2021).
Google Scholar
Li, T. et al. Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production. Nat. Commun. 11, 5448 (2020).
Google Scholar
Jiang, Q. et al. Synthetic engineering of a new biocatalyst encapsulating [NiFe]-hydrogenases for enhanced hydrogen production. J. Mater. Chem. B 11, 2684–2692 (2023).
Google Scholar
Kirst, H. et al. Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate. Proc. Natl. Acad. Sci. USA 119, e2116871119 (2022).
Google Scholar
Lawrence, A. D. et al. Solution structure of a bacterial microcompartment targeting peptide and its application in the construction of an ethanol bioreactor. ACS Synth. Biol. 3, 454–465 (2014).
Google Scholar
Doron, L., Sutter, M. & Kerfeld, C. A. Characterization of a novel aromatic substrate-processing microcompartment in Actinobacteria. mBio 14, e01216-23 (2023).
Google Scholar
Raba, D. A. & Kerfeld, C. A. The potential of bacterial microcompartment architectures for phytonanotechnology. Environ. Microbiol. Rep. 14, 700–710 (2022).
Google Scholar
Dwyer, M. E. et al. Towards chloroplastic nanofactories: formation of proteinaceous scaffolds for metabolic engineering. Plant Biotechnol. J. https://doi.org/10.1111/pbi.14462 (2024).
Aussignargues, C. et al. Structure and function of a bacterial microcompartment shell protein engineered to bind a [4Fe-4S] cluster. J. Am. Chem. Soc. 138, 5262–5270 (2016).
Hagen, A., Sutter, M., Sloan, N. & Kerfeld, C. A. Programmed loading and rapid purification of engineered bacterial microcompartment shells. Nat. Commun. 9, 2881 (2018).
Google Scholar
Hagen, A. R. et al. In vitro assembly of diverse bacterial microcompartment shell architectures. Nano Lett. 18, 7030–7037 (2018).
Google Scholar
Plegaria, J. S. & Kerfeld, C. A. Engineering nanoreactors using bacterial microcompartment architectures. Curr. Opin. Biotechnol. 51, 1–7 (2018).
Google Scholar
Ferlez, B., Sutter, M. & Kerfeld, C. A. A designed bacterial microcompartment shell with tunable composition and precision cargo loading. Metab. Eng. 54, 286–291 (2019).
Google Scholar
Plegaria, J. S., Yates, M. D., Glaven, S. M. & Kerfeld, C. A. Redox characterization of electrode-immobilized bacterial microcompartment shell proteins engineered to bind metal centers. ACS Appl. Bio Mater. 3, 685–692 (2020).
Google Scholar
Doron, L. & Kerfeld, C. A. Bacterial microcompartments as a next-generation metabolic engineering tool: utilizing nature’s solution for confining challenging catabolic pathways. Biochem. Soc. Trans. 52, 997–1010 (2024).
Li, T. et al. Nanoengineering carboxysome shells for protein cages with programmable cargo targeting. ACS Nano 18, 7473–7484 (2024).
Google Scholar
Lee, M. J., Palmer, D. J. & Warren, M. J. Biotechnological advances in bacterial microcompartment technology. Trends Biotechnol. 37, 325–336 (2019).
Google Scholar
Stewart, A. M., Stewart, K. L., Yeates, T. O. & Bobik, T. A. Advances in the world of bacterial microcompartments. Trends Biochem. Sci. 46, 406–416 (2021).
Google Scholar
Frank, S., Lawrence, A. D., Prentice, M. B. & Warren, M. J. Bacterial microcompartments moving into a synthetic biological world. J. Biotechnol. 163, 273–279 (2013).
Google Scholar
Young, E. J. et al. Engineering the bacterial microcompartment domain for molecular scaffolding applications. Front. Microbiol. 8, 1441 (2017).
Google Scholar
Planamente, S. & Frank, S. Bio-engineering of bacterial microcompartments: a mini review. Biochem. Soc. Trans. 47, 765–777 (2019).
Google Scholar
Prentice, M. B. Bacterial microcompartments and their role in pathogenicity. Curr. Opin. Microbiol. 63, 19–28 (2021).
Google Scholar
Jakobson, C. M. & Tullman-Ercek, D. Dumpster diving in the gut: bacterial microcompartments as part of a host-associated lifestyle. PLoS Pathog. 12, e1005558 (2016).
Google Scholar
Haridas, M., Abdelraheem, E. M. M. & Hanefeld, U. 2-Deoxy-d-ribose-5-phosphate aldolase (DERA): applications and modifications. Appl Microbiol. Biotechnol. 102, 9959–9971 (2018).
Google Scholar
Voutilainen, S. et al. Substrate specificity of 2-deoxy-D-ribose 5-phosphate aldolase (DERA) assessed by different protein engineering and machine learning methods. Appl. Microbiol. Biotechnol. 104, 10515–10529 (2020).
Google Scholar
Liu, J. & Wong, C.-H. Aldolase-catalyzed asymmetric synthesis of novel pyranose synthons as a new entry to heterocycles and epothilones. Angew. Chem. Int. Ed. 41, 1404–1407 (2002).
Google Scholar
Gijsen, H. J. M. & Wong, C.-H. Unprecedented asymmetric aldol reactions with three aldehyde substrates catalyzed by 2-deoxyribose-5-phosphate aldolase. J. Am. Chem. Soc. 116, 8422–8423 (1994).
Google Scholar
Kim, T. et al. Rational engineering of 2-deoxyribose-5-phosphate aldolases for the biosynthesis of (R)-1,3-butanediol. J. Biol. Chem. 295, 597–609 (2020).
Google Scholar
Chambre, D. et al. 2-Deoxyribose-5-phosphate aldolase, a remarkably tolerant aldolase towards nucleophile substrates. Chem. Commun. 55, 7498–7501 (2019).
Google Scholar
Sakuraba, H. et al. Sequential aldol condensation catalyzed by hyperthermophilic 2-deoxy- d -ribose-5-phosphate aldolase. Appl. Environ. Microbiol. 73, 7427–7434 (2007).
Google Scholar
Wood, T. Spectrophotometric assay for d-ribose-5-phosphate ketol-isomerase and for d-ribulose-5-phosphate 3-epimerase. Anal. Biochem. 33, 297–306 (1970).
Google Scholar
Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).
Google Scholar
Perkins, D. N., Pappin, D. J. C., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).
Google Scholar
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
Google Scholar
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Google Scholar
Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator: figure 1. Genome Res. 14, 1188–1190 (2004).
Google Scholar
Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).
Google Scholar
Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).
Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Google Scholar
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
Google Scholar