Wednesday, November 27, 2024

Angiopoietin-like protein 8 directs DNA damage responses towards apoptosis by stabilizing PARP1-DNA condensates

BiochemistryAngiopoietin-like protein 8 directs DNA damage responses towards apoptosis by stabilizing PARP1-DNA condensates


  • Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168:644–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015;60:547–60.

    Article 
    PubMed 

    Google Scholar 

  • Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18:610–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pandey N, Black BE. Rapid detection and signaling of DNA damage by PARP-1. Trends Biochem Sci. 2021;46:744–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kraus WL. PARPs and ADP-ribosylation: 60 years on. Genes Dev. 2020;34:251–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25:486–541.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Virag L. Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharm Rev. 2002;54:375–429.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shirai H, Poetsch AR, Gunji A, Maeda D, Fujimori H, Fujihara H, et al. PARG dysfunction enhances DNA double strand break formation in S-phase after alkylation DNA damage and augments different cell death pathways. Cell Death Dis. 2013;4:e656.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen SH, Yu X. Targeting dePARylation selectively suppresses DNA repair-defective and PARP inhibitor-resistant malignancies. Sci Adv. 2019;5:eaav4340.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koh DW, Lawler AM, Poitras MF, Sasaki M, Wattler S, Nehls MC, et al. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc Natl Acad Sci USA. 2004;101:17699–704.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cortes U, Tong WM, Coyle DL, Meyer-Ficca ML, Meyer RG, Petrilli V, et al. Depletion of the 110-kilodalton isoform of poly(ADP-ribose) glycohydrolase increases sensitivity to genotoxic and endotoxic stress in mice. Mol Cell Biol. 2004;24:7163–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Min W, Cortes U, Herceg Z, Tong WM, Wang ZQ. Deletion of the nuclear isoform of poly(ADP-ribose) glycohydrolase (PARG) reveals its function in DNA repair, genomic stability and tumorigenesis. Carcinogenesis. 2010;31:2058–65.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tufan AB, Lazarow K, Kolesnichenko M, Sporbert A, von Kries JP, Scheidereit C. TSG101 associates with PARP1 and is essential for PARylation and DNA damage-induced NF-kappaB activation. EMBO J. 2022;41:e110372.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sethy C, Kundu CN. PARP inhibitor BMN-673 induced apoptosis by trapping PARP-1 and inhibiting base excision repair via modulation of pol-beta in chromatin of breast cancer cells. Toxicol Appl Pharm. 2022;436:115860.

    Article 
    CAS 

    Google Scholar 

  • Pommier Y, O’Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med. 2016;8:362ps317.

    Article 

    Google Scholar 

  • Shao Z, Lee BJ, Rouleau-Turcotte E, Langelier MF, Lin X, Estes VM, et al. Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo. Nucleic Acids Res. 2020;48:9694–709.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo X, Kraus WL. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 2012;26:417–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov. 2020;19:711–36.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mitrea DM, Mittasch M, Gomes BF, Klein IA, Murcko MA. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov. 2022;21:841–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chappidi N, Quail T, Doll S, Vogel LT, Aleksandrov R, Felekyan S, et al. PARP1-DNA co-condensation drives DNA repair site assembly to prevent disjunction of broken DNA ends. Cell. 2024;187:945–961 e918.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S, Grofte M, et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat Commun. 2015;6:8088.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell. 2015;162:1066–77.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nosella ML, Kim TH, Huang SK, Harkness RW, Goncalves M, Pan A, et al. Poly(ADP-ribosyl)ation enhances nucleosome dynamics and organizes DNA damage repair components within biomolecular condensates. Mol Cell. 2024;84:429–46 e417.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wei X, Zhou F, Zhang L. PARP1-DNA co-condensation: the driver of broken DNA repair. Signal Transduct Target Ther. 2024;9:135.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;357:eaaf4382.

    Article 
    PubMed 

    Google Scholar 

  • Alberti S. Phase separation in biology. Curr Biol. 2017;27:R1097–R1102.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abu-Farha M, Ghosh A, Al-Khairi I, Madiraju SRM, Abubaker J, Prentki M. The multi-faces of Angptl8 in health and disease: novel functions beyond lipoprotein lipase modulation. Prog Lipid Res. 2020;80:101067.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang J, Song QY, Niu SX, Chen HJ, Petersen RB, Zhang Y, et al. Emerging roles of angiopoietin-like proteins in inflammation: mechanisms and potential as pharmacological targets. J Cell Physiol. 2022;237:98–117.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gusarova V, Banfi S, Alexa-Braun CA, Shihanian LM, Mintah IJ, Lee JS, et al. ANGPTL8 blockade with a monoclonal antibody promotes triglyceride clearance, energy expenditure, and weight loss in mice. Endocrinology. 2017;158:1252–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vatner DF, Goedeke L, Camporez JG, Lyu K, Nasiri AR, Zhang D, et al. Angptl8 antisense oligonucleotide improves adipose lipid metabolism and prevents diet-induced NAFLD and hepatic insulin resistance in rodents. Diabetologia. 2018;61:1435–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tseng YH, Ke PY, Liao CJ, Wu SM, Chi HC, Tsai CY, et al. Chromosome 19 open reading frame 80 is upregulated by thyroid hormone and modulates autophagy and lipid metabolism. Autophagy. 2014;10:20–31.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang C, Tong Y, Wen Y, Cai J, Guo H, Huang L, et al. Hepatocellular carcinoma-associated protein TD26 interacts and enhances sterol regulatory element-binding protein 1 activity to promote tumor cell proliferation and growth. Hepatology. 2018;68:1833–50.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang Y, Guo X, Yan W, Chen Y, Ke M, Cheng C, et al. ANGPTL8 negatively regulates NF-kappaB activation by facilitating selective autophagic degradation of IKKgamma. Nat Commun. 2017;8:2164.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Z, Wu H, Dai L, Yuan Y, Zhu Y, Ma Z, et al. ANGPTL8 enhances insulin sensitivity by directly activating insulin-mediated AKT phosphorylation. Gene. 2020;749:144707.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun X, Fu K, Hodgson A, Wier EM, Wen MG, Kamenyeva O, et al. Sam68 is required for DNA damage responses via regulating poly(ADP-ribosyl)ation. Plos Biol. 2016;14:e1002543.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang F, Chen JJ, Liu B, Gao GZ, Sebastian M, Jeter C, et al. SPINDOC binds PARP1 to facilitate PARylation. Nat Commun. 2021;12:6362.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turinetto V, Giachino C. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res. 2015;43:2489–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abu-Qare AW, Abou-Donia MB. Biomarkers of apoptosis: release of cytochrome c, activation of caspase-3, induction of 8-hydroxy-2’-deoxyguanosine, increased 3-nitrotyrosine, and alteration of p53 gene. J Toxicol Environ Health B Crit Rev. 2001;4:313–32.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Verdin E. NAD+ in aging, metabolism, and neurodegeneration. Science. 2015;350:1208–13.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roos WP, Thomas AD, Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer. 2016;16:20–33.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gunn A, Stark JM. I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks. Methods Mol Biol. 2012;920:379–91.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72:5588–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rhine K, Odeh HM, Shorter J, Myong S. Regulation of biomolecular condensates by Poly(ADP-ribose). Chem Rev. 2023;123:9065–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang L, Li DQ. MORC2 regulates DNA damage response through a PARP1-dependent pathway. Nucleic Acids Res. 2019;47:8502–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee YH, Lee SG, Lee CJ, Kim SH, Song YM, Yoon MR, et al. Association between betatrophin/ANGPTL8 and non-alcoholic fatty liver disease: animal and human studies. Sci Rep. 2016;6:24013.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khandoga A, Enders G, Biberthaler P, Krombach F. Poly(ADP-ribose) polymerase triggers the microvascular mechanisms of hepatic ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2002;283:G553–560.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Konishi T, Lentsch AB. Hepatic ischemia/reperfusion: mechanisms of tissue injury, repair, and regeneration. Gene Expr. 2017;17:277–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang M, Zhang J, Zhang J, Sun K, Li Q, Kuang B, et al. Methyl eugenol attenuates liver ischemia reperfusion injury via activating PI3K/Akt signaling. Int Immunopharmacol. 2021;99:108023.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matt S, Hofmann TG. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell Mol Life Sci. 2016;73:2829–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang JYJ. Cell death response to DNA damage. Yale J Biol Med. 2019;92:771–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kiraz Y, Adan A, Kartal Yandim M, Baran Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol. 2016;37:8471–86.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heymann F, Tacke F. Immunology in the liver-from homeostasis to disease. Nat Rev Gastroenterol Hepatol. 2016;13:88–110.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer. 2023;23:78–94.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355:1152–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pilie PG, Gay CM, Byers LA, O’Connor MJ, Yap TA. PARP inhibitors: extending benefit beyond BRCA-mutant cancers. Clin Cancer Res. 2019;25:3759–71.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020;8:564601.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li H, Liu ZY, Wu N, Chen YC, Cheng Q, Wang J. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer. 2020;19:107.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, Zhang ZT, Wan SY, Yang J, Wei YJ, Chen HJ, et al. ANGPTL3 negatively regulates IL-1beta-induced NF-kappaB activation by inhibiting the IL1R1-associated signaling complex assembly. J Mol Cell Biol. 2023;15:mjad053.

  • Huang Y, Xie Y, Yang D, Xiong M, Chen X, Wu D, et al. Histone demethylase UTX aggravates acetaminophen overdose induced hepatotoxicity through dual mechanisms. Pharm Res. 2022;175:106021.

    Article 
    CAS 

    Google Scholar 

  • Chen H, Liu C, Wang Q, Xiong M, Zeng X, Yang D, et al. Renal UTX-PHGDH-serine axis regulates metabolic disorders in the kidney and liver. Nat Commun. 2022;13:3835.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang J, Xiong MR, Fan Y, Liu CY, Wang Q, Yang D, et al. Mecp2 protects kidney from ischemia-reperfusion injury through transcriptional repressing IL-6/STAT3 signaling. Theranostics. 2022;12:3896–910.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui N, Liu C, Tang X, Song L, Xiao Z, Wang C, et al. ISG15 accelerates acute kidney injury and the subsequent AKI-to-CKD transition by promoting TGFbetaR1 ISGylation. Theranostics 2024;14:4536–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang C, Xu H, Yang D, Xie Y, Xiong M, Fan Y, et al. A renal YY1-KIM1-DR5 axis regulates the progression of acute kidney injury. Nat Commun. 2023;14:4261.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen H, Wang L, Wang WJ, Cheng C, Zhang Y, Zhou Y, et al. ELABELA and an ELABELA fragment protect against AKI. J Am Soc Nephrol. 2017;28:2695–708.

    Article 

    Google Scholar 

  • Chen Y, Shi J, Wang X, Zhou L, Wang Q, Xie Y, et al. An antioxidant feedforward cycle coordinated by linker histone variant H1.2 and NRF2 that drives nonsmall cell lung cancer progression. Proc Natl Acad Sci USA. 2023;120:e2306288120.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiong M, Chen H, Fan Y, Jin M, Yang D, Chen Y, et al. Tubular Elabela-APJ axis attenuates ischemia-reperfusion induced acute kidney injury and the following AKI-CKD transition by protecting renal microcirculation. Theranostics. 2023;13:3387–401.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li X, Yu L, Liu X, Shi T, Zhang Y, Xiao Y, et al. Beta-synuclein regulates the phase transitions and amyloid conversion of alpha-synuclein. Nat Commun. 2024;15:8748.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Langelier MF, Planck JL, Servent KM, Pascal JM. Purification of human PARP-1 and PARP-1 domains from Escherichia coli for structural and biochemical analysis. Methods Mol Biol. 2011;780:209–26.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu C, Wang J, Wei Y, Zhang W, Geng M, Yuan Y, et al. Fat-specific knockout of Mecp2 upregulates slpi to reduce obesity by enhancing browning. Diabetes. 2020;69:35–47.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang D, Fan Y, Xiong M, Chen Y, Zhou Y, Liu X, et al. Loss of renal tubular G9a benefits acute kidney injury by lowering focal lipid accumulation via CES1. EMBO Rep. 2023;24:e56128.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lou J, Chen H, Han J, He H, Huen MSY, Feng XH, et al. AUNIP/C1orf135 directs DNA double-strand breaks towards the homologous recombination repair pathway. Nat Commun. 2017;8:985.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Check out our other content

    Most Popular Articles