Monday, December 23, 2024

Exploring cost reduction strategies for serum free media development

BiochemistryExploring cost reduction strategies for serum free media development


  • Searchin, T., Waite, R., Hanson, C. & Ranganathan, J. World Resources Report: Creating a Sustainable Food Future. World Resources Institute (2019).

  • OECD-FAO Agricultural Outlook 2023-2032. (OECD, 2023). https://doi.org/10.1787/08801ab7-en.

  • Cultured Meat Market Growth, Size, Share, Trends, and Forecast 2030. Zion Market Research (2023).

  • Even, M. S., Sandusky, C. B. & Barnard, N. D. Serum-free hybridoma culture: ethical, scientific and safety considerations. Trends Biotechnol. 24, 105–108 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Neill, E. N., Cosenza, Z. A., Baar, K. & Block, D. E. Considerations for the development of cost‐effective cell culture media for cultivated meat production. Compr. Rev. Food Sci. Food Saf. 20, 686–709 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Fang, C.-Y., Wu, C.-C., Fang, C.-L., Chen, W.-Y. & Chen, C.-L. Long-term growth comparison studies of FBS and FBS alternatives in six head and neck cell lines. PLOS ONE 12, e0178960 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Humbird, D. Scale‐up economics for cultured meat. Biotechnol. Bioeng. 118, 3239–3250 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kolkmann, A. M., Essen, A. V., Post, M. J. & Moutsatsou, P. Development of a Chemically Defined Medium for in vitro Expansion of Primary Bovine Satellite Cells. Front. Bioeng. Biotechnol. 10, 895289 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Specht, L. An analysis of culture medium costs and production volumes for cultivated meat. The Good Food Institute (2020).

  • Stout, A. J. et al. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Commun. Biol. 5, 466 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Skrivergaard, S. et al. A simple and robust serum-free media for the proliferation of muscle cells. Food Res. Int. 172, 113194 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garrison, G. L., Biermacher, J. T. & Brorsen, B. W. How much will large-scale production of cell-cultured meat cost? J. Agriculture Food Res. 10, 100358 (2022).

    Article 

    Google Scholar 

  • Vergeer, R., Sinke, P. & Odegard, I. TEA of cultivated meat Future projections of different scenarios. Delft, CE Delft (2021).

  • Kuo, H.-H. et al. Negligible-cost and weekend-free chemically defined human iPSC culture. Stem Cell Rep. 14, 256–270 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lin, J., Yi, X. & Zhuang, Y. Medium optimization based on comparative metabolomic analysis of chicken embryo fibroblast DF-1 cells. RSC Adv. 9, 27369–27377 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Messmer, T. et al. A serum-free media formulation for cultured meat production supports bovine satellite cell differentiation in the absence of serum starvation. Nat. Food 3, 74–85 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gomez Romero, S. & Boyle, N. Systems biology and metabolic modeling for cultivated meat: A promising approach for cell culture media optimization and cost reduction. Compr. Rev. Food Sci. Food Saf. 22, 3422–3443 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Lyra-Leite, D. M. et al. Nutritional requirements of human induced pluripotent stem cells. Stem Cell Rep. 18, 1371–1387 (2023).

    Article 
    CAS 

    Google Scholar 

  • O’Neill, E. N. et al. Spent media analysis suggests cultivated meat media will require species and cell type optimization. npj Sci. Food 6, 46 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jang, M., Scheffold, J., Røst, L. M., Cheon, H. & Bruheim, P. Serum-free cultures of C2C12 cells show different muscle phenotypes which can be estimated by metabolic profiling. Sci. Rep. 12, 827 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitić, R., Cantoni, F., Börlin, C. S., Post, M. J. & Jackisch, L. A simplified and defined serum-free medium for cultivating fat across species. iScience 26, 105822 (2023).

    Article 
    PubMed 

    Google Scholar 

  • GOOD Meat receives approval to commercialize serum-free media. GOOD Meat https://www.goodmeat.co/all-news/good-meat-receives-approval-to-commercialize-serum-free-media (2023).

  • Foods, U. A Destination Guide for the Road to Rubicon: from First Sale to Commercial Scale. Upside Foods https://upsidefoods.com/blog/a-destination-guide-for-the-road-to-rubicon-from-first-sale-to-commercial-scale (2023).

  • Aleph Farms Granted World’s First Regulatory Approval for Cultivated Beef. Aleph Farms https://aleph-farms.com/journals/aleph-farms-granted-worlds-first-regulatory-approval-for-cultivated-beef/ (2024).

  • Pasitka, L. et al. Spontaneous immortalization of chicken fibroblasts generates stable, high-yield cell lines for serum-free production of cultured meat. Nat. Food 4, 35–50 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Pasitka, L. et al. Empirical economic analysis shows cost-effective continuous manufacturing of cultivated chicken using animal-free medium. Nat. Food 5, 693–702 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Annette, T. Heard of Quailia? Adventurous diners can soon try dishes made with cultivated meat from Japanese quail cells. CNA Luxury https://cnaluxury.channelnewsasia.com/experiences/forged-parfait-lab-cultivated-meat-quailia-244166 (2024).

  • Amy, B. South Korea’s CellMEAT Makes Fetal Bovine Serum-Free Cell Culture Media For 100% Ethical Cultivated Meat. Green Queen https://www.greenqueen.com.hk/cellmeat-fetal-bovine-serum/ (2021).

  • Cell Growth Nutrient Medium- ClearX9®. Clear Meat https://clearmeat.org/products/#stem.

  • Proliferum® M. Multus Biotechnology https://www.multus.bio/products/proliferum-m.

  • NouSerum. Fisher Scientific https://www.fishersci.com/shop/products/a-slaughter-free-serum-replace/NC2319269.

  • Meat Reinvented: Savor the Future with Biftek Supplement. Biftek.co. https://biftek.co/product.

  • Meatly. World-first regulatory approval. Meatly https://meatly.pet/meatly-approval/ (2024).

  • Pietrzkowski, Z. et al. Constitutive expression of insulin-like growth factor 1 and insulin-like growth factor 1 receptor abrogates all requirements for exogenous growth factors. Cell growth & differentiation: the molecular biology. J. Am. Assoc. Cancer Res. 3, 199–205 (1992).

    CAS 

    Google Scholar 

  • Pak, S. C. O., Hunt, S. M. N., Bridges, M. W., Sleigh, M. J. & Gray, P. P. Super-CHO-A cell line capable of autocrine growth under fully defined protein-free conditions. Cytotechnology 22, 139–146 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stout, A. J. et al. Engineered autocrine signaling eliminates muscle cell FGF2 requirements for cultured meat production. Cell Rep. Sustainability 1, 100009 (2024).

    Article 

    Google Scholar 

  • L, K. D., Andrew, S., John, Y. & Natalie, R. Ectopic cellular growth factor expression for low-cost production of cell-cultured foods. (WO2022104373A1) (2022).

  • Singh, D. S. & Schumaker, R. M. Engineering cell lines capable of proliferation in growth factor free media formulations. (WO2023240152A1) (2023).

  • Authority, E. F. S. Food Safety in the EU. (Publications Office, 2019). https://doi.org/10.2805/661752.

  • Cui, K. & Shoemaker, S. P. Public perception of genetically-modified (GM) food: A Nationwide Chinese Consumer Study. npj Sci. Food 2, 10 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, S. et al. Consumer responses to genetically modified food in China: The influence of existing general attitudes, affect and perceptions of risks and benefits. Food Qual. Preference 99, 104543 (2022).

    Article 

    Google Scholar 

  • Jessica, K. & Kristy, W. Animal cell lines for foods containing cultured animal cells. (WO2020237021A1) (2020).

  • Arye, E. & Lee, K. J. Ex vivo meat production. (WO2018227016A1) (2018).

  • Li, Z., Michael, I. P., Zhou, D., Nagy, A. & Rini, J. M. Simple piggyBac transposon-based mammalian cell expression system for inducible protein production. Proc. Natl Acad. Sci. 110, 5004–5009 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venkatesan, M. et al. Recombinant production of growth factors for application in cell culture. iScience 25, 105054 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Q., Xie, L. & Chen, W. Recombinant bovine FGF1 promotes muscle satellite cells mitochondrial fission and proliferation in serum-free conditions. Food Res. Int. 175, 113794 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poudel, S. B. et al. Local supplementation with plant-derived recombinant human FGF2 protein enhances bone formation in critical-sized calvarial defects. J. Bone Miner. Metab. 37, 900–912 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elliot, S. et al. Anticipated growth factor and recombinant protein costs and volumes necessary for cost-competitive cultivated meat. The Good Food Institute (2023).

  • Elizabeth, G. Molecular farming: BioBetter utilizes tobacco plants as animal-free bioreactors for cell-based meat. Food Ingredients First https://www.foodingredientsfirst.com/news/molecular-farming-biobetter-utilizes-tobacco-plants-as-animal-free-bioreactors-for-cell-based-meat.html (2023).

  • Ho, S. Iceland Co Using Barley To Make Affordable Growth Factors For Cell-Based Meat. Green Queen https://www.greenqueen.com.hk/iceland-co-using-barley-to-make-affordable-growth-factors-for-cell-based-meat/ (2020).

  • Batista, A. C., Soudier, P., Kushwaha, M. & Faulon, J.-L. Optimising protein synthesis in cell‐free systems, a review. Eng. Biol. 5, 10–19 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yue, K., Chen, J., Li, Y. & Kai, L. Advancing synthetic biology through cell-free protein synthesis. Computational Struct. Biotechnol. J. 21, 2899–2908 (2023).

    Article 
    CAS 

    Google Scholar 

  • Perez, J. G., Stark, J. C. & Jewett, M. C. Cell-Free Synthetic Biology: Engineering Beyond the Cell. Cold Spring Harb. Perspect. Biol. 8, a023853 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corporation, H. Z. & Co, L. Nup. Developing the world’s first Automatic Wheat Germ Extractor for cultivated meat production without genetically modified organisms. Hitachi Zosen Corporation News Release (2023).

  • Ajinomoto. Pharma-Grade Amino Acids. Ajinomoto Webpage https://www.ajihealthandnutrition.com/solutions/pharma-grade-amino-acids/.

  • Stellavato, A. et al. Comparative Analyses of Pharmaceuticals or Food Supplements Containing Chondroitin Sulfate: Are Their Bioactivities Equivalent? Adv. Ther. 36, 3221–3237 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lobo-Alfonso, J., Price, P. & Jayme, D. Benefits and Limitations of Protein Hydrolysates as Components of Serum-Free Media for Animal Cell Culture Applications. in Protein Hydrolysates in Biotechnology 55–78 (Springer Netherlands, 2008). https://doi.org/10.1007/978-1-4020-6674-0_4.

  • Ho, Y. Y. et al. Applications and analysis of hydrolysates in animal cell culture. Bioresour. Bioprocess. 8, 93 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siemensma, A., Babcock, J., Wilcox, C. & Huttinga, H. Towards an Understanding of How Protein Hydrolysates Stimulate More Efficient Biosynthesis in Cultured Cells. in Protein Hydrolysates in Biotechnology 33–54 (Springer Netherlands, 2008). https://doi.org/10.1007/978-1-4020-6674-0_3.

  • Burnett, C. L. et al. Safety Assessment of Plant-Derived Proteins and Peptides as Used in Cosmetics. Int. J. Toxicol. 41, 5S–20S (2022).

    Article 
    PubMed 

    Google Scholar 

  • Meat, M. Mosa Meat signs an LOI with Nutreco to reduce cost of cell feed and scale up production. Mosa Meat Press Kit https://mosameat.com/press-kit (2023).

  • Mia, M. BlueNalu Advances Strategic Partnership with Nutreco to Progress Cell-Cultured Seafood. Blue Nalu Press Release https://www.bluenalu.com/bluenalu-advances-strategic-partnership-with-nutreco-to-progress-cell-cultured-seafood (2023).

  • Takanori, K. et al. Improving the Safety of Cultured Meat Using Basal Medium Prepared using Food Ingredients. BioRxiv (2022).

  • Natsuko, T. & Hiroaki, H. IntegriCulture and JT Group: Successful development of I-MEM 2.0, a bulk raw material-based basal medium that minimizes use of highly processed raw materials. IntegriCulture Inc News Release https://integriculture.com/en/news/12876/ (2023).

  • Pasupuleti, V. K. & Braun, S. State of the Art Manufacturing of Protein Hydrolysates. in Protein Hydrolysates in Biotechnology 11–32 (Springer Netherlands, 2008). https://doi.org/10.1007/978-1-4020-6674-0_2.

  • Santiago-Díaz, P., Rivero, A., Rico, M. & Gómez-Pinchetti, J. L. Characterization of Novel Selected Microalgae for Antioxidant Activity and Polyphenols, Amino Acids, and Carbohydrates. Mar. Drugs 20, 40 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Čmiková, N. et al. Characterization of selected microalgae species as potential sources of nutrients and antioxidants. Foods 13, 2160 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Defendi-Cho, G. & Gould, T. M. In vitro culture of bovine fibroblasts using select serum-free media supplemented with Chlorella vulgaris extract. BMC Biotechnol. 23, 4 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okamoto, Y. et al. Proliferation and differentiation of primary bovine myoblasts using Chlorella vulgaris extract for sustainable production of cultured meat. Biotechnology Progress 38 (2022).

  • Ghosh, J. et al. Proliferation of mammalian cells with Chlorococcum littorale algal compounds without serum support. Biotechnol. Prog. 40, e3402 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghosh, J., Haraguchi, Y., Asahi, T., Nakao, Y. & Shimizu, T. Muscle cell proliferation using water-soluble extract from nitrogen-fixing cyanobacteria Anabaena sp. PCC 7120 for sustainable cultured meat production. Biochemical Biophysical Res. Commun. 682, 316–324 (2023).

    Article 
    CAS 

    Google Scholar 

  • Dong, N., Jiang, B., Chang, Y., Wang, Y. & Xue, C. Integrated Omics Approach: Revealing the Mechanism of Auxenochlorella pyrenoidosa Protein Extract Replacing Fetal Bovine Serum for Fish Muscle Cell Culture. J. Agric. Food Chem. 72, 6064–6076 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Occhipinti, P. S. et al. Current challenges of microalgae applications: exploiting the potential of non‐conventional microalgae species. J. Sci. Food Agriculture 104, 3823–3833 (2024).

    Article 
    CAS 

    Google Scholar 

  • Lucas, E. et al. Cultivating alternative proteins from commodity crop sidestreams. (2023).

  • Flaibam, B. et al. Non-animal protein hydrolysates from agro-industrial wastes: A prospect of alternative inputs for cultured meat. Food Chem. 443, 138515 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, C. H. et al. Evaluation of fermented soybean meal and edible insect hydrolysates as potential serum replacement in pig muscle stem cell culture. Food Biosci. 54, 102923 (2023).

    Article 
    CAS 

    Google Scholar 

  • Flaibam, B. et al. Low-cost protein extracts and hydrolysates from plant-based agro-industrial waste: Inputs of interest for cultured meat. Innovative Food Sci. Emerg. Technol. 93, 103644 (2024).

    Article 
    CAS 

    Google Scholar 

  • Teng, T. S., Lee, J. J. L. & Chen, W. N. Ultrafiltrated Extracts of Fermented Okara as a Possible Serum Alternative for Cell Culturing: Potential in Cultivated Meat Production. ACS Food Sci. Technol. 3, 699–709 (2023).

    Article 
    CAS 

    Google Scholar 

  • Stout, A. J. et al. A Beefy-R culture medium: Replacing albumin with rapeseed protein isolates. Biomaterials 296, 122092 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andreassen, R. C., Pedersen, M. E., Kristoffersen, K. A. & Rønning, S. B. Screening of by-products from the food industry as growth promoting agents in serum-free media for skeletal muscle cell culture. Food Funct. 11, 2477–2488 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Flaibam, B. & Goldbeck, R. Effects of enzymes on protein extraction and post-extraction hydrolysis of non-animal agro-industrial wastes to obtain inputs for cultured meat. Food Bioprod. Process. 143, 117–127 (2024).

    Article 
    CAS 

    Google Scholar 

  • Yang, M. et al. Cell culture medium cycling in cultured meat: Key factors and potential strategies. Trends Food Sci. Technol. 138, 564–576 (2023).

    Article 
    CAS 

    Google Scholar 

  • Hubalek, S., Melke, J., Pawlica, P., Post, M. J. & Moutsatsou, P. Non-ammoniagenic proliferation and differentiation media for cultivated adipose tissue. Front. Bioeng. Biotechnol. 11, 1202165 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ha, T. K. & Lee, G. M. Effect of glutamine substitution by TCA cycle intermediates on the production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. J. Biotechnol. 180, 23–29 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Genzel, Y., Ritter, J. B., König, S., Alt, R. & Reichl, U. Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol. Prog. 21, 58–69 (2008).

    Article 

    Google Scholar 

  • Lao, M.-S. & Toth, D. Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnol. Prog. 13, 688–691 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cruz, H. J., Freitas, C. M., Alves, P. M., Moreira, J. L. & Carrondo, M. J. T. Effects of ammonia and lactate on growth, metabolism, and productivity of BHK cells. Enzym. Microb. Technol. 27, 43–52 (2000).

    Article 
    CAS 

    Google Scholar 

  • Leong, D. S. Z. et al. Evaluation and use of disaccharides as energy source in protein-free mammalian cell cultures. Sci. Rep. 7, 45216 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchsteiner, M., Quek, L.-E., Gray, P. & Nielsen, L. K. Improving culture performance and antibody production in CHO cell culture processes by reducing the Warburg effect. Biotechnol. Bioeng. 115, 2315–2327 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, G., Gulbranson, D. R., Yu, P., Hou, Z. & Thomson, J. A. Thermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells 30, 623–630 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Dvorak, P. et al. Computer‐assisted engineering of hyperstable fibroblast growth factor 2. Biotechnol. Bioeng. 115, 850–862 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zakrzewska, M., Krowarsch, D., Wiedlocha, A. & Otlewski, J. Design of fully active FGF-1 variants with increased stability. Protein Eng. Des. Selection 17, 603–611 (2004).

    Article 
    CAS 

    Google Scholar 

  • An, Y. J. et al. Improvement of FGF7 thermal stability by introduction of mutations in close vicinity to disulfide bond and surface salt bridge. Int. J. Pept. Res. Therapeutics 28, 85 (2022).

    Article 
    CAS 

    Google Scholar 

  • Mizrahi, A. & Avihoo, A. Growth medium utilization and its re-use for animal cell cultures. J. Biol. Standardization 5, 31–37 (1977).

    Article 
    CAS 

    Google Scholar 

  • Riese, U., Lütkemeyer, D., Heidemann, R., Büntemeyer, H. & Lehmann, J. Re-use of spent cell culture medium in pilot scale and rapid preparative purification with membrane chromatography. J. Biotechnol. 34, 247–257 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nahmias, Y. Systems and methods for growing cells in vitro. (2017) (WO2018011805A9).

  • Nath, S. C., Nagamori, E., Horie, M. & Kino-oka, M. Culture medium refinement by dialysis for the expansion of human induced pluripotent stem cells in suspension culture. Bioprocess Biosyst. Eng. 40, 123–131 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ogawa, A., Takada, N. & Terada, S. Effective antibody production by reusing culture medium previously used in antibody purification. Biosci., Biotechnol., Biochem. 73, 719–721 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Madabhushi, S. R. et al. An innovative strategy to recycle permeate in biologics continuous manufacturing process to improve material efficiency and sustainability. Biotechnol. Prog. 38, e3262 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haraguchi, Y., Okamoto, Y. & Shimizu, T. A circular cell culture system using microalgae and mammalian myoblasts for the production of sustainable cultured meat. Arch. Microbiol. 204, 615 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haraguchi, Y. et al. Circular cell culture for sustainable food production using recombinant lactate-assimilating cyanobacteria that supplies pyruvate and amino acids. Arch. Microbiol. 205, 266 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Check out our other content

    Most Popular Articles