Saturday, January 4, 2025

Preventive effect of Tyr-Pro, a blood-brain barrier transportable dipeptide, on memory impairment in SAMP8 mice

BiochemistryPreventive effect of Tyr-Pro, a blood-brain barrier transportable dipeptide, on memory impairment in SAMP8 mice


  • Knopman, D. S. et al. Alzheimer disease. Nat. Rev. Dis. Prim. 7, 33 (2021).

    Article 
    PubMed 

    Google Scholar 

  • DeTure, M. A. & Dickson, D. W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 14, 32 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Brien, R. J. & Wong, P. C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 34, 185–204 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agostinho, P., Cunha, R. A. & Oliveira, C. Neuroinflammation, oxidative stress and the pathogenesis of alzheimers disease. Curr. Pharm. Des. 16, 2766–2778 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brockmann, R., Nixon, J., Love, B. L. & Yunusa, I. Impacts of FDA approval and Medicare restriction on antiamyloid therapies for Alzheimer’s disease: patient outcomes, healthcare costs, and drug development. Lancet Reg. Health Am. 20, 100467 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Haskell-Ramsay, C. F., Schmitt, J. & Actis-Goretta, L. The impact of epicatechin on human cognition: The role of cerebral blood flow. Nutrients 10, 986 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maccioni, R. B., Calfío, C., González, A. & Lüttges, V. Novel nutraceutical compounds in Alzheimer prevention. Biomolecules 12, 249 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baig, M. H., Ahmad, K., Rabbani, G. & Choi, I. Use of peptides for the management of Alzheimer’s disease: Diagnosis and inhibition. Front. Aging Neurosci. 10, 21 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maebuchi, M., Kishi, Y., Koikeda, T. & Furuya, S. Soy peptide dietary supplementation increases serum dopamine level and improves cognitive dysfunction in subjects with mild cognitive impairment. Jpn. Pharmacol. Ther. 41, 67–73 (2013).

    CAS 

    Google Scholar 

  • Yuda, N. et al. Effect of the Casein-Derived Peptide Met-Lys-Pro on Cognitive Function in Community-Dwelling Adults Without Dementia: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Interv. Aging 15, 743–754 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tanaka, M. et al. Brain-transportable dipeptides across the blood-brain barrier in mice. Sci. Rep. 9, 5769 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, L. et al. A memory-improving dipeptide, Tyr-Pro, can reach the mouse brain after oral administration. Sci. Rep. 13, 16908 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tanaka, M. et al. Brain-transportable soy dipeptide, Tyr-Pro, attenuates amyloid β peptide25-35-induced memory impairment in mice. npj Sci. Food 4, 7 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alonso, A. C., Grundke-Iqbal, I. & Iqbal, K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat. Med. 2, 783–787 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iqbal, K., Liu, F. & Gong, C.-X. Tau and neurodegenerative disease: the story so far. Nat. Rev. Neurol. 12, 15–27 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Del Valle, J. et al. Early amyloid accumulation in the hippocampus of SAMP8 mice. J. Alzheimers Dis. 19, 1303–1315 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Pačesová, A. et al. Age-related metabolic and neurodegenerative changes in SAMP8 mice. Aging (Albany NY) 14, 7300–7327 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Gómez-Oliva, R. et al. Rescue of neurogenesis and age-associated cognitive decline in SAMP8 mouse: role of transforming growth factor alpha. Aging Cell. 22, e13829 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Canudas, A. M. et al. Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM). Mech. Ageing Dev. 126, 1300–1304 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vassar, R. & Citron, M. Abeta-generating enzymes: recent advances in beta- and gamma-secretase research. Neuron 27, 419–422 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, G.-F. et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38, 1205–1235 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akiguchi, I. et al. SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda’s legacy and future directions. Neuropathology 37, 293–305 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, C., Zhang, T. & Zhang, Y. Conformational essentials responsible for neurotoxicity of Aβ42 aggregates revealed by antibodies against oligomeric Aβ42. Molecules 27, 6751 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butterfield, D. A. & Poon, H. F. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer’s disease. Exp. Gerontol. 40, 774–783 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, F., Chen, H., Sun, X. J. & Ke, Z. J. Improvement of cognitive deficits in SAMP8 mice by 3-n-butylphthalide. Neurol. Res. 36, 224–233 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Z.-X., Zhao, R.-P., Wang, D.-S. & Li, Y.-B. Fuzhisan ameliorates the memory deficits in aged SAMP8 mice via decreasing Aβ production and tau hyperphosphorylation of the hippocampus. Neurochem. Res. 41, 3074–3082 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lv, L.-L. et al. Dendrobium nobile Lindl. Alkaloids ameliorate cognitive dysfunction in senescence accelerated SAMP8 mice by decreasing amyloid-β aggregation and enhancing autophagy activity. J. Alzheimers Dis. 76, 657–669 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, Y. et al. Fermented soybean foods (natto) ameliorate age-related cognitive decline by hippocampal TAAR1-mediated activation of the CaMKII/CREB/BDNF signaling pathway in senescence-accelerated mouse prone 8 (SAMP8). Food Funct. 14, 10097–10106 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J. K. et al. Neuroprotective Effect of β-secretase Inhibitory Peptide from Pacific Hake (Merluccius productus) Fish Protein Hydrolysate. Curr. Alzheimer Res. 16, 1028–1038 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, Z. et al. Identification of ovalbumin-derived peptides as multi-target inhibitors of AChE, BChE, and BACE1. J. Sci. Food Agric. 100, 2648–2655 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bian, L. et al. Insulin-degrading enzyme and Alzheimer disease: a genetic association study in the Han Chinese. Neurology 63, 241–245 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corraliza-Gomez, M. et al. Insulin-degrading enzyme (IDE) as a modulator of microglial phenotypes in the context of Alzheimer’s disease and brain aging. J. Neuroinflam. 20, 233 (2023).

    Article 
    CAS 

    Google Scholar 

  • Shen, Y., Joachimiak, A., Rosner, M. R. & Tang, W.-J. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature 443, 870–874 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sousa, L., Guarda, M., Meneses, M. J., Macedo, M. P. & Vicente Miranda, H. Insulin-degrading enzyme: an ally against metabolic and neurodegenerative diseases. J. Pathol. 255, 346–361 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Takamatsu, Y. et al. Combined immunotherapy with “anti-insulin resistance” therapy as a novel therapeutic strategy against neurodegenerative diseases. npj Parkinsons Dis. 3, 4 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, A. Y., Lee, M. H., Lee, S. & Cho, E. J. Alpha-Linolenic Acid from Perilla frutescens var. japonica Oil Protects Aβ-Induced Cognitive Impairment through Regulation of APP Processing and Aβ Degradation. J. Agric. Food Chem. 65, 10719–10729 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, S.-J. et al. Dietary curcumin restores insulin homeostasis in diet-induced obese aged mice. Aging (Albany NY) 14, 225–239 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, L. et al. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer’s disease intervention. J. Neurosci. 24, 11120–11126 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, Y. et al. In vitro and in silico characterization of adiponectin-receptor agonist dipeptides. npj Sci. Food 5, 29 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, L. et al. Adiponectin-receptor agonistic dipeptide Tyr-Pro stimulates the acetylcholine nervous system in NE-4C cells. J. Agric. Food Chem. 72, 7121–7129 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morris, R. G. M. Spatial localization does not require the presence of local cues. Learn. Motiv. 12, 239–260 (1981).

    Article 

    Google Scholar 

  • Kubota, K. et al. The traditional Japanese herbal medicine hachimijiogan elicits neurite outgrowth effects in PC12 cells and improves cognitive in AD model rats via phosphorylation of CREB. Front. Pharmacol. 8, 850 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Check out our other content

    Most Popular Articles