Saturday, July 27, 2024

Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets

BiochemistryBile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets


  • Xu, J. et al. National Vital Statistics Reports, Volume 70, Number 8 July 26, 2016. Deaths: final data 2019. Natl. Vital Stat. Rep. 70, (2021).

  • Hirode, G. & Wong, R. J. Trends in the prevalence of metabolic syndrome in the United States, 2011-2016. JAMA 323, 2526–2528 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, X. et al. Prevalence of metabolic syndrome in the United States National Health and Nutrition Examination Survey 2011–18. Postgrad. Med. J. 99, 985–992 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Choudhuri, S. & Klaassen, C. D. Molecular regulation of bile acid homeostasis. Drug Metab. Dispos. 50, 425–455 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chiang, J. Y. L. Bile acid metabolism and signaling. Compr. Physiol. 3, 1191–1212 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y. & Zhang, J. Bile acid metabolism and circadian rhythms. Am. J. Physiol. Gastrointest. Liver Physiol. 319, G549–G563 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • May 19, 2023: Meeting of the Gastrointestinal Drugs Advisory Committee Meeting Announcement – 05/19/2023. https://www.fda.gov/advisory-committees/committees-and-meeting-materials/may-19-2023-meeting-gastrointestinal-drugs-advisory-committee-meeting-announcement-05192023#event-materials (FDA, 2023).

  • Thomas, C. et al. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 7, 678–693 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perino, A., Demagny, H., Velazquez-Villegas, L. & Schoonjans, K. Molecular physiology of bile acid signaling in health, disease, and aging. Physiol. Rev. 101, 683–731 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Russell, D. W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yetti, H. et al. Bile acid detoxifying enzymes limit susceptibility to liver fibrosis in female SHRSP5/Dmcr rats fed with a high-fat-cholesterol diet. PLOS One. 13, e0192863 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lake, A. D. et al. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease. Toxicol. Appl. Pharmacol. 268, 132–140 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Worthmann, A. et al. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat. Med. 23, 839–849 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ishibashi, S. et al. Disruption of cholesterol 7α-hydroxylase gene in mice. J. Biol. Chem. 271, 18017–18023 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ferdinandusse, S. & Houten, S. M. Peroxisomes and bile acid biosynthesis. Biochim. Biophys. Acta BBA Mol. Cell Res. 1763, 1427–1440 (2006).

    Article 
    CAS 

    Google Scholar 

  • Li, J. & Dawson, P. A. Animal models to study bile acid metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 895–911 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alnouti, Y. Bile acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol. Sci. 108, 225–246 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trottier, J. et al. Profiling serum bile acid glucuronides in humans: gender divergences, genetic determinants and response to fenofibrate. Clin. Pharmacol. Ther. 94, 533–543 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chiang, J. Y. Recent advances in understanding bile acid homeostasis. F1000Research. 6, 2029 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Botham, K. M. & Boyd, G. S. The metabolism of chenodeoxycholic acid to beta-muricholic acid in rat liver. Eur. J. Biochem. 134, 191–196 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sacquet, E. et al. Intestinal absorption, excretion, and biotransformation of hyodeoxycholic acid in man. J. Lipid Res. 24, 604–613 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Boer, J. F. et al. A human-like bile acid pool induced by deletion of hepatic Cyp2c70 modulates effects of FXR activation in mice [S]. J. Lipid Res. 61, 291–305 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Xie, Y. et al. Gamma-muricholic acid inhibits nonalcoholic steatohepatitis: abolishment of steatosis-dependent peroxidative impairment by FXR/SHP/LXRα/FASN signaling. Nutrients 15, 1255 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Ciaula, A. et al. Bile acid physiology. Ann. Hepatol. 16, S4–S14 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Honda, A. et al. Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition. J. Lipid Res. 61, 54–69 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wahlström, A., Sayin, S. I., Marschall, H.-U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Tanaka, H., Hashiba, H., Kok, J. & Mierau, I. Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization. Appl. Environ. Microbiol. 66, 2502–2512 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guzior, D. V. & Quinn, R. A. Review: microbial transformations of human bile acids. Microbiome 9, 140 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Foley, M. H. et al. Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut. Nat. Microbiol. 8, 611–628 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, G.-B., Yi, S.-H. & Lee, B. H. Purification and characterization of three different types of bile salt hydrolases from Bifidobacterium strains. J. Dairy Sci. 87, 258–266 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elkins, C. A., Moser, S. A. & Savage, D. C. Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species. Microbiology 147, 3403–3412 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corzo, G. & Gilliland, S. E. Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. J. Dairy Sci. 82, 472–480 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Coleman, J. P. & Hudson, L. L. Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens. Appl. Environ. Microbiol. 61, 2514–2520 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wijaya, A. et al. Cloning of the bile salt hydrolase (bsh) gene from Enterococcus faecium FAIR-E 345 and chromosomal location of bsh genes in food enterococci. J. Food Prot. 67, 2772–2778 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dussurget, O. et al. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45, 1095–1106 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dean, M. et al. Characterization of cholylglycine hydrolase from a bile-adapted strain of Xanthomonas maltophilia and its application for quantitative hydrolysis of conjugated bile salts. Appl. Environ. Microbiol. 68, 3126–3128 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawamoto, K., Horibe, I. & Uchida, K. Purification and characterization of a new hydrolase for conjugated bile acids, chenodeoxycholyltaurine hydrolase, from Bacteroides vulgatus. J. Biochem. 106, 1049–1053 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Delpino, M. V. et al. A bile salt hydrolase of Brucella abortus contributes to the establishment of a successful infection through the oral route in mice. Infect. Immun. 75, 299–305 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Joyce, S. A. & Gahan, C. G. M. Disease-associated changes in bile acid profiles and links to altered gut microbiota. Dig. Dis. Basel Switz. 35, 169–177 (2017).

    Article 

    Google Scholar 

  • Doden, H. et al. Metabolism of oxo-bile acids and characterization of recombinant 12α-hydroxysteroid dehydrogenases from bile acid 7α-dehydroxylating human gut bacteria. Appl. Environ. Microbiol. 84, e00235–18 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guzior, D. V. et al. Bile salt hydrolase acyltransferase activity expands bile acid diversity. Nature 626, 852–858 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rimal, B. et al. Bile salt hydrolase catalyses formation of amine-conjugated bile acids. Nature 626, 859–863 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van de Waterbeemd, H., Karajiannis, H. & El Tayar, N. Lipophilicity of amino acids. Amino Acids 7, 129–145 (1994).

    Article 
    PubMed 

    Google Scholar 

  • Ridlon, J. M. & Hylemon, P. B. Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium. J. Lipid Res. 53, 66–76 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mallonee, D. H., Adams, J. L. & Hylemon, P. B. The bile acid-inducible baiB gene from Eubacterium sp. strain VPI 12708 encodes a bile acid-coenzyme A ligase. J. Bacteriol. 174, 2065–2071 (1992).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dawson, J. A., Mallonee, D. H., Björkhem, I. & Hylemon, P. B. Expression and characterization of a C24 bile acid 7 alpha-dehydratase from Eubacterium sp. strain VPI 12708 in Escherichia coli. J. Lipid Res. 37, 1258–1267 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Coleman, J. P., White, W. B. & Hylemon, P. B. Molecular cloning of bile acid 7-dehydroxylase from Eubacterium sp. strain VPI 12708. J. Bacteriol. 169, 1516–1521 (1987).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, D.-J. et al. Clostridium scindens baiCD and baiH genes encode stereo-specific 7alpha/7beta-hydroxy-3-oxo-delta4-cholenoic acid oxidoreductases. Biochim. Biophys. Acta 1781, 16–25 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mallonee, D. H. & Hylemon, P. B. Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708. J. Bacteriol. 178, 7053–7058 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heinken, A. et al. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome 7, 75 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhowmik, S. et al. Structure and functional characterization of a bile acid 7α dehydratase BaiE in secondary bile acid synthesis. Proteins 84, 316–331 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ridlon, J. M. et al. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7, 22–39 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Funabashi, M. et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582, 566–570 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, S. C. et al. Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243T. Gut Microbes 9, 523–539 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirano, S. & Masuda, N. Epimerization of the 7-hydroxy group of bile acids by the combination of two kinds of microorganisms with 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activity, respectively. J. Lipid Res. 22, 1060–1068 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eggert, T., Bakonyi, D. & Hummel, W. Enzymatic routes for the synthesis of ursodeoxycholic acid. J. Biotechnol. 191, 11–21 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Giovannini, P. P. et al. 7α- and 12α-Hydroxysteroid dehydrogenases from Acinetobacter calcoaceticus lwoffii: a new integrated chemo-enzymatic route to ursodeoxycholic acid. Steroids 73, 1385–1390 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wegner, K. et al. Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria. Anal. Bioanal. Chem. 409, 1231–1245 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nouioui, I. et al. Genome-based taxonomic classification of the phylum actinobacteria. Front. Microbiol. 9, (2018).

  • Mythen, S. M. et al. Targeted synthesis and characterization of a gene cluster encoding NAD(P)H-dependent 3α-, 3β-, and 12α-hydroxysteroid dehydrogenases from Eggerthella CAG:298, a gut metagenomic sequence. Appl. Environ. Microbiol. 84, e02475–17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lepercq, P. et al. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by Clostridium baratii isolated from human feces. FEMS Microbiol. Lett. 235, 65–72 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pedrini, P. et al. Xanthomonas maltophilia CBS 897.97 as a source of new 7beta- and 7alpha-hydroxysteroid dehydrogenases and cholylglycine hydrolase: improved biotransformations of bile acids. Steroids 71, 189–198 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J.-Y. et al. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. J. Lipid Res. 54, 3062–3069 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrandi, E. E. et al. In search of sustainable chemical processes: cloning, recombinant expression, and functional characterization of the 7α- and 7β-hydroxysteroid dehydrogenases from Clostridium absonum. Appl. Microbiol. Biotechnol. 95, 1221–1233 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, L., Aigner, A. & Schmid, R. D. Identification, cloning, heterologous expression, and characterization of a NADPH-dependent 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens. Appl. Microbiol. Biotechnol. 90, 127–135 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Macdonald, I. A., Jellett, J. F., Mahony, D. E. & Holdeman, L. V. Bile salt 3α- and 12α-hydroxysteroid dehydrogenases from eubacterium lentum and related organisms. Appl. Environ. Microbiol. 37, 992–1000 (1979).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edenharder, R. & Schneider, J. 12 beta-dehydrogenation of bile acids by Clostridium paraputrificum, C. tertium, and C. difficile and epimerization at carbon-12 of deoxycholic acid by cocultivation with 12 alpha-dehydrogenating Eubacterium lentum. Appl. Environ. Microbiol. 49, 964–968 (1985).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heuman, D. M., Hylemon, P. B. & Vlahcevic, Z. R. Regulation of bile acid synthesis. III. Correlation between biliary bile salt hydrophobicity index and the activities of enzymes regulating cholesterol and bile acid synthesis in the rat. J. Lipid Res. 30, 1161–1171 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chiang, J. Y. L. & Ferrell, J. M. Bile acid metabolism in liver pathobiology. Gene Expr. 18, 71–87 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thakare, R. et al. Species differences in bile acids I. Plasma and urine bile acid composition. J. Appl. Toxicol. 38, 1323–1335 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Setchell, K. D. R. et al. Genetic defects in bile acid conjugation cause fat-soluble vitamin deficiency. Gastroenterology 144, 945–955.e6 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van de Peppel, I. P., Bodewes, F. A. J. A., Verkade, H. J. & Jonker, J. W. Bile acid homeostasis in gastrointestinal and metabolic complications of cystic fibrosis. J. Cyst. Fibros. 18, 313–320 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Suga, T. et al. Preference of conjugated bile acids over unconjugated bile acids as substrates for OATP1B1 and OATP1B3. PLoS ONE 12, e0169719 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kullak-Ublick, G. A., Stieger, B., Hagenbuch, B. & Meier, P. J. Hepatic transport of bile salts. Semin. Liver Dis. 20, 273–292 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, D. Q.-H., Tazuma, S., Cohen, D. E. & Carey, M. C. Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G494–G502 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hofmann, A. F., Hagey, L. R. & Krasowski, M. D. Bile salts of vertebrates: structural variation and possible evolutionary significance. J. Lipid Res. 51, 226–246 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Higuchi, S. The physiological importance of bile acid structure and composition on glucose homeostasis. Curr. Diab. Rep. 20, 42 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell. 3, 543–553 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lew, J.-L. et al. The farnesoid X receptor controls gene expression in a ligand- and promoter-selective fashion. J. Biol. Chem. 279, 8856–8861 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, F. et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat. Commun. 4, 2384 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chevre, R. et al. Therapeutic modulation of the bile acid pool by Cyp8b1 knockdown protects against nonalcoholic fatty liver disease in mice. FASEB J. 32, 3792–3802 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mukhopadhyay, S. & Maitra, U. Chemistry and biology of bile acids. Curr. Sci. 87, 1666–1683 (2004).

    CAS 

    Google Scholar 

  • Halilbasic, E., Claudel, T. & Trauner, M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J. Hepatol. 58, 155–168 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boyer, J. L. In Comprehensive Physiology (ed. Terjung, R.) 1035–1078 (Wiley, 2013).

  • Dawson, P. A., Lan, T. & Rao, A. Bile acid transporters. J. Lipid Res. 50, 2340–2357 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shneider, B. L. et al. Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J. Clin. Invest. 95, 745–754 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Houten, S. & Auwerx, J. The enterohepatic nuclear receptors are major regulators of the enterohepatic circulation of bile salts. Ann. Med. 36, 482–491 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hofmann, A. F. & Hagey, L. R. Bile Acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci. 65, 2461–2483 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dawson, P. A. et al. Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J. Biol. Chem. 278, 33920–33927 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rao, A. et al. The organic solute transporter alpha-beta, Ostalpha-Ostbeta, is essential for intestinal bile acid transport and homeostasis. Proc. Natl Acad. Sci. USA 105, 3891–3896 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kemper, J. K. Regulation of FXR transcriptional activity in health and disease: emerging roles of FXR cofactors and post-translational modifications. Biochim. Biophys. Acta 1812, 842–850 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, L. et al. Farnesoid X receptor (FXR): structures and ligands. Comput. Struct. Biotechnol. J. 19, 2148–2159 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramos Pittol, J. M. et al. FXR isoforms control different metabolic functions in liver cells via binding to specific DNA motifs. Gastroenterology 159, 1853–1865.e10 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50, D988–D995 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Torres, J. et al. Farnesoid X receptor expression is decreased in colonic mucosa of patients with primary sclerosing cholangitis and colitis-associated neoplasia. Inflamm. Bowel Dis. 19, 275–282 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Bailey, A. M. et al. FXR silencing in human colon cancer by DNA methylation and KRAS signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G48–G58 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Selmin, O. I. et al. Inactivation of adenomatous polyposis coli reduces bile acid/farnesoid X receptor expression through Fxr gene CpG methylation in mouse colon tumors and human colon cancer cells. J. Nutr. 146, 236–242 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cabrerizo, R. et al. Promoter DNA methylation of farnesoid X receptor and pregnane X receptor modulates the intrahepatic cholestasis of pregnancy phenotype. PLoS ONE 9, e87697 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wan, Y.-J. Y. & Sheng, L. Regulation of bile acid receptor activity. Liver Res. 2, 180–185 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kemper, J. K. et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 10, 392–404 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Purushotham, A. et al. Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1α/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice. Mol. Cell. Biol. 32, 1226–1236 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, F., Hu, Y., Liu, H.-X. & Wan, Y.-J. Y. MiR-22-silenced cyclin A expression in colon and liver cancer cells is regulated by bile acid receptor. J. Biol. Chem. 290, 6507–6515 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, D. et al. miR-22 represses cancer progression by inducing cellular senescence. J. Cell Biol. 193, 409–424 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, S.-E. et al. Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 12, 1062–1072 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Balasubramaniyan, N., Luo, Y., Sun, A.-Q. & Suchy, F. J. SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes. J. Biol. Chem. 288, 13850–13862 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y., Hagedorn, C. H. & Wang, L. Role of nuclear receptor SHP in metabolism and cancer. Biochim. Biophys. Acta 1812, 893–908 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miao, J. et al. Functional specificities of Brm and Brg-1 Swi/Snf ATPases in the feedback regulation of hepatic bile acid biosynthesis. Mol. Cell. Biol. 29, 6170–6181 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kadam, S. & Emerson, B. M. Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol. Cell. 11, 377–389 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Strobeck, M. W. et al. Compensation of BRG-1 function by Brm: insight into the role of the core SWI-SNF subunits in retinoblastoma tumor suppressor signaling. J. Biol. Chem. 277, 4782–4789 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, Z., Ryerson, D. & Kemper, J. K. Epigenomic regulation of bile acid metabolism: emerging role of transcriptional cofactors. Mol. Cell. Endocrinol. 368, 59–70 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fang, S. et al. Coordinated recruitment of histone methyltransferase G9a and other chromatin-modifying enzymes in SHP-mediated regulation of hepatic bile acid metabolism. Mol. Cell. Biol. 27, 1407–1424 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goo, Y.-H. et al. Activating signal cointegrator 2 belongs to a novel steady-state complex that contains a subset of trithorax group proteins. Mol. Cell. Biol. 23, 140–149 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. et al. A tumor suppressive coactivator complex of p53 containing ASC-2 and histone H3-lysine-4 methyltransferase MLL3 or its paralogue MLL4. Proc. Natl Acad. Sci. USA 106, 8513–8518 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, S., Roeder, R. G. & Lee, J. W. Roles of histone H3-lysine 4 methyltransferase complexes in NR-mediated gene transcription. Prog. Mol. Biol. Transl. Sci. 87, 343–382 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, D.-H., Lee, J., Lee, B. & Lee, J. W. ASCOM controls farnesoid X receptor transactivation through its associated histone H3 lysine 4 methyltransferase activity. Mol. Endocrinol. 23, 1556–1562 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, D.-H., Kim, J. & Lee, J. W. Requirement for MLL3 in p53 regulation of hepatic expression of small heterodimer partner and bile acid homeostasis. Mol. Endocrinol. 25, 2076–2083 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Inagaki, T. et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2, 217–225 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, C. et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6, 10166 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, J. H. et al. Potent stimulation of fibroblast growth factor 19 expression in the human ileum by bile acids. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G940–G948 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcelin, G. et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol. Metab. 3, 19–28 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryan, K. K. et al. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology 154, 9–15 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Byun, S. et al. Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis. Nat. Commun. 9, 2590 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S. Q. et al. Shp2 regulates Src family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol. Cell. 13, 341–355 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Li, S. et al. Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis. Cell Metab. 20, 320–332 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Belov, A. A. & Mohammadi, M. Grb2, a double-edged sword of receptor tyrosine kinase signaling. Sci. Signal. 5, pe49–pe49 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, C. et al. An intestinal farnesoid X receptor–ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes 66, 613–626 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miao, J. et al. Bile acid signaling pathways increase stability of Small Heterodimer Partner (SHP) by inhibiting ubiquitin–proteasomal degradation. Genes Dev. 23, 986–996 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Somm, E. & Jornayvaz, F. R. Fibroblast growth factor 15/19: from basic functions to therapeutic perspectives. Endocr. Rev. 39, 960–989 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Goodwin, B. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell. 6, 517–526 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stroup, D. & Chiang, J. Y. HNF4 and COUP-TFII interact to modulate transcription of the cholesterol 7alpha-hydroxylase gene (CYP7A1). J. Lipid Res. 41, 1–11 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, M. & Chiang, J. Y. Transcriptional regulation of the human sterol 12alpha-hydroxylase gene (CYP8B1): roles of heaptocyte nuclear factor 4alpha in mediating bile acid repression. J. Biol. Chem. 276, 41690–41699 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, Y., Zhang, M., Eggertsen, G. & Chiang, J. Y. L. On the mechanism of bile acid inhibition of rat sterol 12alpha-hydroxylase gene (CYP8B1) transcription: roles of alpha-fetoprotein transcription factor and hepatocyte nuclear factor 4alpha. Biochim. Biophys. Acta 1583, 63–73 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoshida, E. et al. Functional association between CBP and HNF4 in trans-activation. Biochem. Biophys. Res. Commun. 241, 664–669 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cooney, A. J., Tsai, S. Y., O’Malley, B. W. & Tsai, M. J. Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol. Cell. Biol. 12, 4153–4163 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ge, M., Shao, R. & He, H. Advances in understanding the regulatory mechanism of cholesterol 7α-hydroxylase. Biochem. Pharmacol. 164, 152–164 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. An FGF15/19-TFEB regulatory loop controls hepatic cholesterol and bile acid homeostasis. Nat. Commun. 11, 3612 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wan, Z. Y. et al. Mechanistic target of rapamycin complex 1 is an essential mediator of metabolic and mitogenic effects of fibroblast growth factor 19 in hepatoma cells. Hepatology 64, 1289–1301 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kerr, T. A. et al. Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis. Dev. Cell. 2, 713–720 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kir, S. et al. Nuclear receptors HNF4α and LRH-1 cooperate in regulating Cyp7a1 in vivo. J. Biol. Chem. 287, 41334–41341 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, I. et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J. Lipid Res. 48, 2664–2672 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rizzo, G. et al. Role of FXR in regulating bile acid homeostasis and relevance for human diseases. Curr. Drug Targets Immune Endocr. Metab. Disord. 5, 289–303 (2005).

    Article 
    CAS 

    Google Scholar 

  • Eloranta, J. J. & Kullak-Ublick, G. A. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch. Biochem. Biophys. 433, 397–412 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zollner, G., Marschall, H.-U., Wagner, M. & Trauner, M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol. Pharm. 3, 231–251 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Watanabe, M. et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 113, 1408–1418 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoshikawa, T. et al. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol. Cell. Biol. 21, 2991–3000 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, Y.-C. et al. Intestinal FGF15/19 physiologically repress hepatic lipogenesis in the late fed-state by activating SHP and DNMT3A. Nat. Commun. 11, 5969 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y., Viscarra, J., Kim, S.-J. & Sul, H. S. Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol. 16, 678–689 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kast, H. R. et al. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol. Endocrinol. 15, 1720–1728 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Claudel, T. et al. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 125, 544–555 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hayhurst, G. P. et al. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol. Cell. Biol. 21, 1393–1403 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pineda Torra, I. et al. Bile acids induce the expression of the human peroxisome proliferator-activated receptor α gene via activation of the farnesoid X receptor. Mol. Endocrinol. 17, 259–272 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Savkur, R. S., Bramlett, K. S., Michael, L. F. & Burris, T. P. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor. Biochem. Biophys. Res. Commun. 329, 391–396 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hirokane, H. et al. Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J. Biol. Chem. 279, 45685–45692 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Claudel, T. et al. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J. Clin. Invest. 109, 961–971 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mak, P. A., Kast-Woelbern, H. R., Anisfeld, A. M. & Edwards, P. A. Identification of PLTP as an LXR target gene and apoE as an FXR target gene reveals overlapping targets for the two nuclear receptors. J. Lipid Res. 43, 2037–2041 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dong, B. et al. Activation of FXR by obeticholic acid induces hepatic gene expression of SR-BI through a novel mechanism of transcriptional synergy with the nuclear receptor LXR. Int. J. Mol. Med. 43, 1927–1938 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Identification of novel pathways that control farnesoid X receptor-mediated hypocholesterolemia. J. Biol. Chem. 285, 3035–3043 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, Y. et al. Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice. Hepatology 64, 1072–1085 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jakulj, L. et al. Transintestinal cholesterol transport is active in mice and humans and controls ezetimibe-induced fecal neutral sterol excretion. Cell Metab. 24, 783–794 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, L. et al. Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J. Biol. Chem. 280, 8742–8747 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Al-Dury, S. et al. Obeticholic acid may increase the risk of gallstone formation in susceptible patients. J. Hepatol. 71, 986–991 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Langhi, C. et al. Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytes. FEBS Lett. 582, 949–955 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghosh Laskar, M., Eriksson, M., Rudling, M. & Angelin, B. Treatment with the natural FXR agonist chenodeoxycholic acid reduces clearance of plasma LDL whilst decreasing circulating PCSK9, lipoprotein(a) and apolipoprotein C-III. J. Intern. Med. 281, 575–585 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc. Natl Acad. Sci. USA 103, 1006–1011 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, K., Saha, P. K., Chan, L. & Moore, D. D. Farnesoid X receptor is essential for normal glucose homeostasis. J. Clin. Invest. 116, 1102–1109 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cariou, B. et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J. Biol. Chem. 281, 11039–11049 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cipriani, S., Mencarelli, A., Palladino, G. & Fiorucci, S. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J. Lipid Res. 51, 771–784 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caron, S. et al. Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes. Mol. Cell. Biol. 33, 2202–2211 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kir, S. et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331, 1621–1624 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamagata, K. et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J. Biol. Chem. 279, 23158–23165 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wattanavanitchakorn, S. et al. CCAAT-enhancer binding protein-α (C/EBPα) and hepatocyte nuclear factor 4α (HNF4α) regulate expression of the human fructose-1,6-bisphosphatase 1 (FBP1) gene in human hepatocellular carcinoma HepG2 cells. PLoS ONE 13, e0194252 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X., Yang, S., Chen, J. & Su, Z. Unraveling the regulation of hepatic gluconeogenesis. Front. Endocrinol. 9, 802 (2019).

    Article 

    Google Scholar 

  • Trabelsi, M.-S. et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun. 6, 7629 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Wondisford, A. R. et al. Control of Foxo1 gene expression by co-activator P300. J. Biol. Chem. 289, 4326–4333 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Potthoff, M. J. et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab. 13, 729–738 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, J. et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119, 121–135 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koo, S.-H. et al. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat. Med. 10, 530–534 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Massafra, V. et al. Farnesoid X receptor activation promotes hepatic amino acid catabolism and ammonium clearance in mice. Gastroenterology 152, 1462–1476.e10 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Renga, B. et al. The nuclear receptor FXR regulates hepatic transport and metabolism of glutamine and glutamate. Biochim. Biophys. Acta 1812, 1522–1531 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gingras, A.-C., Raught, B. & Sonenberg, N. eIF4 Initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schote, A. B., Turner, J. D., Schiltz, J. & Muller, C. P. Nuclear receptors in human immune cells: expression and correlations. Mol. Immunol. 44, 1436–1445 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yao, J. et al. FXR agonist GW4064 alleviates endotoxin-induced hepatic inflammation by repressing macrophage activation. World J. Gastroenterol. 20, 14430–14441 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. Antiatherosclerotic effect of farnesoid X receptor. Am. J. Physiol. -Heart Circ. Physiol. 296, H272–H281 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vavassori, P. et al. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183, 6251–6261 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hao, H. et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis. Cell Metab. 25, 856–867.e5 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y.-D. et al. Farnesoid X receptor antagonizes nuclear factor κB in hepatic inflammatory response. Hepatology 48, 1632–1643 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Malhi, H., Guicciardi, M. E. & Gores, G. J. Hepatocyte death: a clear and present danger. Physiol. Rev. 90, 1165–1194 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. et al. Noncanonical farnesoid X receptor signaling inhibits apoptosis and impedes liver fibrosis. EBioMedicine 37, 322–333 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gai, Z. et al. Farnesoid X receptor activation induces the degradation of hepatotoxic 1-deoxysphingolipids in non-alcoholic fatty liver disease. Liver Int. 40, 844–859 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhogal, H. K. & Sanyal, A. J. The molecular pathogenesis of cholestasis in sepsis. Front. Biosci. -Elite 5, 87–96 (2013).

    Article 

    Google Scholar 

  • Adachi, T. et al. The involvement of endoplasmic reticulum stress in bile acid-induced hepatocellular injury. J. Clin. Biochem. Nutr. 54, 129–135 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Panzitt, K. & Wagner, M. FXR in liver physiology: multiple faces to regulate liver metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166133 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yin, Z., Pascual, C. & Klionsky, D. J. Autophagy: machinery and regulation. Microb. Cell. 3, 588–596 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seok, S. et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 516, 108–111 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. M. et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516, 112–115 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferré, P. & Foufelle, F. A new role for a metabolic star: AMP-activated protein kinase stimulates fat absorption. Cell Metab. 13, 1–2 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Lien, F. et al. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. J. Clin. Invest. 124, 1037–1051 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, C., Chen, W.-D. & Wang, Y.-D. TGR5, not only a metabolic regulator. Front. Physiol. 7, 646 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, S. et al. Aberrant DNA methylation of G-protein-coupled bile acid receptor Gpbar1 predicts prognosis of acute-on-chronic hepatitis B liver failure. J. Viral Hepat. 22, 112–119 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Han, L.-Y. et al. Aberrant DNA methylation of G-protein-coupled bile acid receptor Gpbar1 (TGR5) is a potential biomarker for hepatitis B Virus associated hepatocellular carcinoma. Int. J. Med. Sci. 11, 164–171 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pathak, P. et al. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism. J. Biol. Chem. 292, 11055–11069 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. X. et al. G Protein-coupled bile acid receptor TGR5 activation inhibits kidney disease in obesity and diabetes. J. Am. Soc. Nephrol. 27, 1362–1378 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rajagopal, S. et al. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G527–G535 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qi, Y.-C. et al. Taurochenodeoxycholic acid mediates cAMP-PKA-CREB signaling pathway. Chin. J. Nat. Med. 18, 898–906 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, W. et al. TGR5 agonist inhibits intestinal epithelial cell apoptosis via cAMP/PKA/c-FLIP/JNK signaling pathway and ameliorates dextran sulfate sodium-induced ulcerative colitis. Acta Pharmacol. Sin. 44, 1649–1664 (2023).

  • Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, L.-J. & Zhang, S.-F. Activation of TGR5 promotes mitochondrial biogenesis in human aortic endothelial cells. Biochem. Biophys. Res. Commun. 500, 952–957 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Donepudi, A. C., Boehme, S., Li, F. & Chiang, J. Y. L. G protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis. Hepatology 65, 813–827 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McGavigan, A. K. et al. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut 66, 226–234 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Holter, M. M., Chirikjian, M. K., Govani, V. N. & Cummings, B. P. TGR5 signaling in hepatic metabolic health. Nutrients 12, 2598 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, Y. et al. Hepatic thyroid hormone signalling modulates glucose homeostasis through the regulation of GLP-1 production via bile acid-mediated FXR antagonism. Nat. Commun. 13, 6408 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lammel Lindemann, J. A. et al. Thyroid hormone induction of human cholesterol 7 alpha-hydroxylase (Cyp7a1) in vitro. Mol. Cell. Endocrinol. 388, 32–40 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bianco, A. C., Sheng, X. Y. & Silva, J. E. Triiodothyronine amplifies norepinephrine stimulation of uncoupling protein gene transcription by a mechanism not requiring protein synthesis. J. Biol. Chem. 263, 18168–18175 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Jesus, L. A. et al. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J. Clin. Invest. 108, 1379–1385 (2001).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giudicelli, Y. Thyroid-hormone modulation of the number of beta-adrenergic receptors in rat fat-cell membranes. Biochem. J. 176, 1007–1010 (1978).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Volke, L. & Krause, K. Effect of thyroid hormones on adipose tissue flexibility. Eur. Thyroid J. 10, 1–9 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, J.-Y. et al. Triiodothyronine induces UCP-1 expression and mitochondrial biogenesis in human adipocytes. Am. J. Physiol. -Cell Physiol. 302, C463–C472 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Periasamy, M. et al. Role of SERCA pump in muscle thermogenesis and metabolism. Compr. Physiol. 7, 879–890 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Periasamy, M., Herrera, J. L. & Reis, F. C. G. Skeletal muscle thermogenesis and its role in whole body energy metabolism. Diabetes Metab. J. 41, 327–336 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zekri, Y., Flamant, F. & Gauthier, K. Central vs. peripheral action of thyroid hormone in adaptive thermogenesis: a burning topic. Cells 10, 1327 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brent, G. A. Mechanisms of thyroid hormone action. J. Clin. Invest. 122, 3035–3043 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ventura-Clapier, R., Garnier, A. & Veksler, V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1. Cardiovasc. Res. 79, 208–217 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schmid, A. et al. Evidence of functional bile acid signaling pathways in adipocytes. Mol. Cell. Endocrinol. 483, 1–10 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Evans, M. J. & Scarpulla, R. C. NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev. 4, 1023–1034 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Virbasius, J. V. & Scarpulla, R. C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl Acad. Sci. 91, 1309–1313 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gleyzer, N., Vercauteren, K. & Scarpulla, R. C. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol. Cell. Biol. 25, 1354–1366 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, L. et al. PGC-1α-mediated mitochondrial quality control: molecular mechanisms and implications for heart failure. Front. Cell Dev. Biol. 10, 871357 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iwaki, M. et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52, 1655–1663 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Berg, A. H. et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 947–953 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Combs, T. P. et al. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Invest. 108, 1875–1881 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hada, Y. et al. Selective purification and characterization of adiponectin multimer species from human plasma. Biochem. Biophys. Res. Commun. 356, 487–493 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamauchi, T. et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 13, 332–339 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sharma, A. X. & Holland, W. L. Adiponectin and its hydrolase-activated receptors. J. Nat. Sci. 3, e396 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, Y. et al. Adiponectin receptor agonist ameliorates cardiac lipotoxicity via enhancing ceramide metabolism in type 2 diabetic mice. Cell Death Dis. 13, 1–20 (2022).

    Article 

    Google Scholar 

  • Botta, A. et al. An adiponectin-S1P axis protects against lipid induced insulin resistance and cardiomyocyte cell death via reduction of oxidative stress. Nutr. Metab. 16, 14 (2019).

    Article 

    Google Scholar 

  • Lancaster, G. I. & Febbraio, M. A. Adiponectin sphings into action. Nat. Med. 17, 37–38 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Y., Talbot, C. L. & Chaurasia, B. Ceramides in adipose tissue. Front. Endocrinol. 11, 407 (2020).

    Article 

    Google Scholar 

  • Kumar, D. P. et al. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells. Biochem. Biophys. Res. Commun. 427, 600–605 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aktories, K. et al. cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology—tribute to Karl H. Jakobs. Naunyn. Schmiedebergs Arch. Pharmacol. 392, 887–911 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hamilton, A. et al. Adrenaline stimulates glucagon secretion by Tpc2-dependent Ca2+ mobilization from acidic stores in pancreatic α-cells. Diabetes 67, 1128–1139 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fujimoto, K. et al. Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP-GEFII.Rim2. Piccolo complex in cAMP-dependent exocytosis. J. Biol. Chem. 277, 50497–50502 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schmidt, M., Dekker, F. J. & Maarsingh, H. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol. Rev. 65, 670–709 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Maczewsky, J. et al. TGR5 activation promotes stimulus-secretion coupling of pancreatic β-cells via a PKA-dependent pathway. Diabetes 68, 324–336 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Light, P. E., Manning Fox, J. E., Riedel, M. J. & Wheeler, M. B. Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. Mol. Endocrinol. 16, 2135–2144 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nakazaki, M. et al. cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes 51, 3440–3449 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Holst, J. J. The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409–1439 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vettorazzi, J. F. et al. The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic beta cells. Metabolism 65, 54–63 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Katsuma, S., Hirasawa, A. & Tsujimoto, G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun. 329, 386–390 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Higuchi, S. et al. Bile acid composition regulates GPR119-dependent intestinal lipid sensing and food intake regulation in mice. Gut 69, 1620–1628 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Roberts, R. E. et al. The relationship between postprandial bile acid concentration, GLP-1, PYY and ghrelin. Clin. Endocrinol. 74, 67–72 (2011).

    Article 
    CAS 

    Google Scholar 

  • Kuhre, R. E. et al. Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol. Metab. 11, 84–95 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bala, V. et al. Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-ε pathway and modulated by endogenous H2S. Front. Physiol. 5, 420 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gündüz, D. et al. Role of PI3K/Akt and MEK/ERK signalling in cAMP/Epac-mediated endothelial barrier stabilisation. Front. Physiol 10, 1387 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, W. & Hall, M. N. Regulation of mTORC2 Signaling. Genes 11, 1045 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cunningham, R. P., Sheldon, R. D. & Rector, R. S. The emerging role of hepatocellular eNOS in non-alcoholic fatty liver disease development. Front. Physiol. 11, 767 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kida, T. et al. Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33, 1663–1669 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • García-Morales, V., Luaces-Regueira, M. & Campos-Toimil, M. The cAMP effectors PKA and Epac activate endothelial NO synthase through PI3K/Akt pathway in human endothelial cells. Biochem. Pharmacol. 145, 94–101 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Keitel, V. et al. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology 50, 861–870 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Flass, T. & Narkewicz, M. R. Cirrhosis and other liver disease in cystic fibrosis. J. Cyst. Fibros. 12, 116–124 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Deutschmann, K. et al. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim. Biophys. Acta BBA – Mol. Basis Dis. 1864, 1319–1325 (2018).

    Article 
    CAS 

    Google Scholar 

  • Beuers, U. et al. The biliary HCO3− umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 52, 1489–1496 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hohenester, S. et al. A biliary HCO3− umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 55, 173–183 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perino, A. & Schoonjans, K. TGR5 and immunometabolism: insights from physiology and pharmacology. Trends Pharmacol. Sci. 36, 847–857 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Descombes, P. & Schibler, U. A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67, 569–579 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sunilkumar, S., Kimball, S. R. & Dennis, M. D. Glucagon transiently stimulates mTORC1 by activation of an EPAC/Rap1 signaling axis. Cell. Signal. 84, 110010 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, H. et al. 5-Cyano-6-oxo-1,6-dihydro-pyrimidines as potent antagonists targeting exchange proteins directly activated by cAMP. Bioorg. Med. Chem. Lett. 22, 4038–4043 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perino, A. et al. TGR5 reduces macrophage migration through mTOR-induced C/EBPβ differential translation. J. Clin. Invest. 124, 5424–5436 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pols, T. W. H. et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 14, 747–757 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y.-D. et al. The G-Protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology 54, 1421–1432 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, C. et al. The G-protein-coupled bile acid receptor Gpbar1 (TGR5) suppresses gastric cancer cell proliferation and migration through antagonizing STAT3 signaling pathway. Oncotarget 6, 34402–34413 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoneno, K. et al. TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn’s disease. Immunology 139, 19–29 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koga, K. et al. Cyclic adenosine monophosphate suppresses the transcription of proinflammatory cytokines via the phosphorylated c-Fos protein. Immunity 30, 372–383 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Biagioli, M. et al. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis. J. Immunol. 199, 718–733 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, P. et al. p-CREB-1 promotes hepatic fibrosis through the transactivation of transforming growth factor-β1 expression in rats. Int. J. Mol. Med. 38, 521–528 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dempsey, L. A. Bile acids block NLRP3. Nat. Immunol. 17, 1243–1243 (2016).

    PubMed 

    Google Scholar 

  • Shi, Y. et al. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation. Front. Immunol. 11, 609060 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, H. et al. TGR5 activation attenuates neuroinflammation via Pellino3 inhibition of caspase-8/NLRP3 after middle cerebral artery occlusion in rats. J. Neuroinflammation 18, 40 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Högenauer, K. et al. G-Protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce the production of proinflammatory cytokines and stabilize the alternative macrophage phenotype. J. Med. Chem. 57, 10343–10354 (2014).

    Article 
    PubMed 

    Google Scholar 

  • McMahan, R. H. et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J. Biol. Chem. 288, 11761–11770 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wammers, M. et al. Reprogramming of pro-inflammatory human macrophages to an anti-inflammatory phenotype by bile acids. Sci. Rep. 8, 255 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, R. et al. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2. Hepatology 60, 908–918 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, R. et al. Taurocholate induces cyclooxygenase-2 expression via the sphingosine 1-phosphate receptor 2 in a human cholangiocarcinoma cell line. J. Biol. Chem. 290, 30988–31002 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Studer, E. et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 55, 267–276 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Burg, N., Salmon, J. E. & Hla, T. Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nat. Rev. Rheumatol. 18, 335–351 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagahashi, M. et al. Conjugated bile acid activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology 61, 1216–1226 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nagahashi, M. et al. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases. J. Lipid Res. 57, 1636–1643 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, J. et al. Sphingosine 1-phosphate (S1P)/S1P receptor2/3 axis promotes inflammatory M1 polarization of bone marrow-derived monocyte/macrophage via G(α)i/o/PI3K/JNK pathway. Cell. Physiol. Biochem. 49, 1677–1693 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karimian, G. et al. Sphingosine kinase-1 inhibition protects primary rat hepatocytes against bile salt-induced apoptosis. Biochim. Biophys. Acta 1832, 1922–1929 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice. Hepatology 65, 2005–2018 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. S1PR2/RhoA/ROCK1 pathway promotes inflammatory bowel disease by inducing intestinal vascular endothelial barrier damage and M1 macrophage polarization. Biochem. Pharmacol. 201, 115077 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schledwitz, A. et al. Differential actions of muscarinic receptor subtypes in gastric, pancreatic, and colon cancer. Int. J. Mol. Sci. 22, 13153 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, K. et al. Functional interaction of lithocholic acid conjugates with M3 muscarinic receptors on a human colon cancer cell line. Biochim. Biophys. Acta 1588, 48–55 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, G. et al. Cholinergic agonist-induced pepsinogen secretion from murine gastric chief cells is mediated by M1 and M3 muscarinic receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G521–G529 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, L. et al. High expression of muscarinic acetylcholine receptor 3 predicts poor prognosis in patients with pancreatic ductal adenocarcinoma. OncoTargets Ther. 9, 6719–6726 (2016).

    Article 
    CAS 

    Google Scholar 

  • Von Rosenvinge, E. C. & Raufman, J.-P. Muscarinic receptor signaling in colon cancer. Cancers 3, 971–981 (2011).

    Article 

    Google Scholar 

  • Amonyingcharoen, S. et al. Taurolithocholic acid promotes intrahepatic cholangiocarcinoma cell growth via muscarinic acetylcholine receptor and EGFR/ERK1/2 signaling pathway. Int. J. Oncol. 46, 2317–2326 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Makishima, M. et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296, 1313–1316 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. et al. Nuclear receptor atlas of female mouse liver parenchymal, endothelial, and Kupffer cells. Physiol. Genom. 45, 268–275 (2013).

    Article 
    CAS 

    Google Scholar 

  • Norman, A. W. Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology 147, 5542–5548 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nehring, J. A., Zierold, C. & DeLuca, H. F. Lithocholic acid can carry out in vivo functions of vitamin D. Proc. Natl Acad. Sci. USA 104, 10006–10009 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, S. & Chiang, J. Y. L. Mechanism of vitamin D receptor inhibition of cholesterol 7alpha-hydroxylase gene transcription in human hepatocytes. Drug Metab. Dispos. Biol. Fate Chem. 37, 469–478 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jurutka, P. W. et al. Molecular and functional comparison of 1,25-dihydroxyvitamin D(3) and the novel vitamin D receptor ligand, lithocholic acid, in activating transcription of cytochrome P450 3A4. J. Cell. Biochem. 94, 917–943 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, X. et al. Transactivation of rat apical sodium-dependent bile acid transporter and increased bile acid transport by 1alpha,25-dihydroxyvitamin D3 via the vitamin D receptor. Mol. Pharmacol. 69, 1913–1923 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McCarthy, T. C., Li, X. & Sinal, C. J. Vitamin D receptor-dependent regulation of colon multidrug resistance-associated protein 3 gene expression by bile acids. J. Biol. Chem. 280, 23232–23242 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chatterjee, B., Echchgadda, I. & Song, C. S. Vitamin D receptor regulation of the steroid/bile acid sulfotransferase SULT2A1. Methods Enzymol. 400, 165–191 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Honjo, Y. et al. 1,25-dihydroxyvitamin D3 and its receptor inhibit the chenodeoxycholic acid-dependent transactivation by farnesoid X receptor. J. Endocrinol. 188, 635–643 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chow, E. C. Y. et al. Vitamin D receptor activation down-regulates the small heterodimer partner and increases CYP7A1 to lower cholesterol. Gastroenterology 146, 1048–1059.e7 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ogura, M. et al. Vitamin D3 modulates the expression of bile acid regulatory genes and represses inflammation in bile duct-ligated mice. J. Pharmacol. Exp. Ther. 328, 564–570 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48, 1396–1406 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, J., Zhang, Y., Xia, Y. & Sun, J. Imbalance of the intestinal virome and altered viral-bacterial interactions caused by a conditional deletion of the vitamin D receptor. Gut Microbes. 13, 1957408 (2021).

  • Lamba, V. et al. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators. Toxicol. Appl. Pharmacol. 199, 251–265 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y.-M., Ong, S. S., Chai, S. C. & Chen, T. Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin. Drug Metab. Toxicol. 8, 803–817 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Staudinger, J. L. et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl Acad. Sci. USA 98, 3369–3374 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wistuba, W. et al. Lithocholic acid induction of the FGF19 promoter in intestinal cells is mediated by PXR. World J. Gastroenterol. 13, 4230–4235 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, W. et al. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc. Natl Acad. Sci. USA 98, 3375–3380 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhalla, S. et al. Ligand-activated pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator PGC-1alpha. Functional implications in hepatic cholesterol and glucose metabolism. J. Biol. Chem. 279, 45139–45147 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, T. & Chiang, J. Y. L. Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 alpha-hydroxylase gene transcription. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G74–G84 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, J. et al. A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway. J. Biol. Chem. 281, 15013–15020 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nakamura, K., Moore, R., Negishi, M. & Sueyoshi, T. Nuclear pregnane X receptor cross-talk with FoxA2 to mediate drug-induced regulation of lipid metabolism in fasting mouse liver. J. Biol. Chem. 282, 9768–9776 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kodama, S., Moore, R., Yamamoto, Y. & Negishi, M. Human nuclear pregnane X receptor cross-talk with CREB to repress cAMP activation of the glucose-6-phosphatase gene. Biochem. J. 407, 373–381 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, H. S. et al. Differential transactivation by two isoforms of the orphan nuclear hormone receptor CAR. J. Biol. Chem. 272, 23565–23571 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baes, M. et al. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol. Cell. Biol. 14, 1544–1552 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kovács, P. et al. Lithocholic acid, a metabolite of the microbiome, increases oxidative stress in breast cancer. Cancers 11, 1255 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wagner, M. et al. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology 42, 420–430 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Janowski, B. A. et al. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383, 728–731 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Svensson, S. et al. Crystal structure of the heterodimeric complex of LXRalpha and RXRbeta ligand-binding domains in a fully agonistic conformation. EMBO J. 22, 4625–4633 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chuu, C.-P., Kokontis, J. M., Hiipakka, R. A. & Liao, S. Modulation of liver X receptor signaling as novel therapy for prostate cancer. J. Biomed. Sci. 14, 543–553 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Venkateswaran, A. et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc. Natl Acad. Sci. USA 97, 12097–12102 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bideyan, L. et al. Integrative analysis reveals multiple modes of LXR transcriptional regulation in liver. Proc. Natl Acad. Sci. USA 119, e2122683119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, S. et al. Adeno-associated virus-based caveolin-1 delivery via different routes for the prevention of cholesterol gallstone formation. Lipids Health Dis. 21, 109 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Remaley, A. T. et al. Comparative genome analysis of potential regulatory elements in the ABCG5–ABCG8 gene cluster. Biochem. Biophys. Res. Commun. 295, 276–282 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goodwin, B. et al. Differential regulation of rat and human CYP7A1 by the nuclear oxysterol receptor liver X receptor-alpha. Mol. Endocrinol. 17, 386–394 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Marino, S. et al. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists. Sci. Rep. 7, 43290 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pawlak, M., Lefebvre, P. & Staels, B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 62, 720–733 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brocker, C. N. et al. Extrahepatic PPARα modulates fatty acid oxidation and attenuates fasting-induced hepatosteatosis in mice. J. Lipid Res. 59, 2140–2152 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, J. et al. Hyodeoxycholic acid ameliorates nonalcoholic fatty liver disease by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling. Nat. Commun. 14, 5451 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, C. et al. Hepatocyte peroxisome proliferator-activated receptor α regulates bile acid synthesis and transport. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 1396–1411 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y., Lickteig, A. J., Csanaky, I. L. & Klaassen, C. D. Editor’s Highlight: clofibrate decreases bile acids in livers of male mice by increasing biliary bile acid excretion in a PPARα-dependent manner. Toxicol. Sci. 160, 351–360 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brocker, C. N. et al. Long non-coding RNA Gm15441 attenuates hepatic inflammasome activation in response to PPARA agonism and fasting. Nat. Commun. 11, 5847 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiong, X. et al. Hepatic steatosis exacerbated by endoplasmic reticulum stress-mediated downregulation of FXR in aging mice. J. Hepatol. 60, 847–854 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, M., Makkinje, A. & Damuni, Z. The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J. Biol. Chem. 271, 11059–11062 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chaurasia, B. et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386–392 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bharath, L. P. et al. Ceramide-initiated protein phosphatase 2A activation contributes to arterial dysfunction in vivo. Diabetes 64, 3914–3926 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stratford, S., Dewald, D. B. & Summers, S. A. Ceramide dissociates 3′-phosphoinositide production from pleckstrin homology domain translocation. Biochem. J. 354, 359–368 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Powell, D. J. et al. Intracellular ceramide synthesis and protein kinase Cζ activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochem. J. 382, 619–629 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Powell, D. J., Hajduch, E., Kular, G. & Hundal, H. S. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCζ-dependent mechanism. Mol. Cell. Biol. 23, 7794–7808 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Q. et al. Suppressing the intestinal farnesoid X receptor/sphingomyelin phosphodiesterase 3 axis decreases atherosclerosis. J. Clin. Invest. 131, e142865 (2021).

  • Grebe, A., Hoss, F. & Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res. 122, 1722–1740 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vandanmagsar, B. et al. The NALP3/NLRP3 inflammasome instigates obesity-induced autoinflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, C.-L. et al. Anti-dengue virus nonstructural protein 1 antibodies cause NO-mediated endothelial cell apoptosis via ceramide-regulated glycogen synthase kinase-3β and NF-κB activation. J. Immunol. 191, 1744–1752 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Raichur, S. et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 20, 919 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Turpin, S. M. et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hammerschmidt, P. et al. CerS6-derived sphingolipids interact with mff and promote mitochondrial fragmentation in obesity. Cell 177, 1536–1552.e23 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prasun, P. Mitochondrial dysfunction in metabolic syndrome. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165838 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chávez-Talavera, O., Tailleux, A., Lefebvre, P. & Staels, B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152, 1679–1694.e3 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Molinaro, A., Wahlström, A. & Marschall, H.-U. Role of bile acids in metabolic control. Trends Endocrinol. Metab. 29, 31–41 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sonne, D. P. et al. Postprandial plasma concentrations of individual bile acids and FGF-19 in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 101, 3002–3009 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cariou, B. et al. Fasting plasma chenodeoxycholic acid and cholic acid concentrations are inversely correlated with insulin sensitivity in adults. Nutr. Metab. 8, 48 (2011).

    Article 
    CAS 

    Google Scholar 

  • Li, T. et al. Glucose and insulin induction of bile acid synthesis: mechanisms and implication in diabetes and obesity. J. Biol. Chem. 287, 1861–1873 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haeusler, R. A. et al. Impaired generation of 12-hydroxylated bile acids links hepatic insulin signaling with dyslipidemia. Cell Metab. 15, 65–74 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duane, W. C. & Javitt, N. B. 27-Hydroxycholesterol: production rates in normal human subjects. J. Lipid Res. 40, 1194–1199 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haeusler, R. A. et al. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes 62, 4184–4191 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaur, A. et al. Loss of Cyp8b1 improves glucose homeostasis by increasing GLP-1. Diabetes 64, 1168–1179 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature 423, 550–555 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Langlet, F. et al. Selective inhibition of FOXO1 activator/repressor balance modulates hepatic glucose handling. Cell 171, 824–835.e18 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mráz, M. et al. Serum concentrations of fibroblast growth factor 19 in patients with obesity and type 2 diabetes mellitus: the influence of acute hyperinsulinemia, very-low calorie diet and PPAR-α agonist treatment. Physiol. Res. 60, 627–636 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Schreuder, T. C. M. A. et al. The hepatic response to FGF19 is impaired in patients with nonalcoholic fatty liver disease and insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G440–G445 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, H. & Fang, S. Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis. Lab. Anim. Res. 34, 140–146 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, C. et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45, 802–816 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meng, Z. et al. Insufficient bile acid signaling impairs liver repair in CYP27−/− mice. J. Hepatol. 55, 885–895 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, X. et al. Hyocholic acid species as novel biomarkers for metabolic disorders. Nat. Commun. 12, 1487 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, X. et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 33, 791–803.e7 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prinz, P. et al. Plasma bile acids show a positive correlation with body mass index and are negatively associated with cognitive restraint of eating in obese patients. Front. Neurosci. 9, 199 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biemann, R. et al. Serum bile acids and GLP-1 decrease following telemetric induced weight loss: results of a randomized controlled trial. Sci. Rep. 6, 30173 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, M. et al. Gut microbiota-bile acid crosstalk contributes to the rebound weight gain after calorie restriction in mice. Nat. Commun. 13, 2060 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, R. et al. Low production of 12α-hydroxylated bile acids prevents hepatic steatosis in Cyp2c70−/− mice by reducing fat absorption. J. Lipid Res. 62, 100134 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J.-Y. et al. 12α-Hydroxylated bile acid induces hepatic steatosis with dysbiosis in rats. Biochim. Biophys. Acta BBA – Mol. Cell Biol. Lipids 1865, 158811 (2020).

    CAS 

    Google Scholar 

  • Haeusler, R. A. et al. Increased bile acid synthesis and impaired bile acid transport in human obesity. J. Clin. Endocrinol. Metab. 101, 1935–1944 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Watanabe, M. et al. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J. Biol. Chem. 286, 26913–26920 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prawitt, J. et al. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60, 1861–1871 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice. Mol. Endocrinol. 26, 272–280 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiao, T. et al. Bile acid and receptors: biology and drug discovery for nonalcoholic fatty liver disease. Acta Pharmacol. Sin. 43, 1103–1119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonzalez, F. J., Jiang, C., Xie, C. & Patterson, A. D. Intestinal farnesoid X receptor signaling modulates metabolic disease. Dig. Dis. 35, 178–184 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Lambert, G. et al. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J. Biol. Chem. 278, 2563–2570 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parséus, A. et al. Microbiota-induced obesity requires farnesoid X receptor. Gut 66, 429–437 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Schmitt, J. et al. Protective effects of farnesoid X receptor (FXR) on hepatic lipid accumulation are mediated by hepatic FXR and independent of intestinal FGF15 signal. Liver Int. 35, 1133–1144 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Velazquez-Villegas, L. A. et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat. Commun. 9, 245 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castellanos-Jankiewicz, A. et al. Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab. 33, 1483–1492.e10 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Somm, E. et al. β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue. JCI Insight 2, e91809 (2017). 91809.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Somm, E. et al. β-Klotho deficiency shifts the gut-liver bile acid axis and induces hepatic alterations in mice. Am. J. Physiol. Endocrinol. Metab. 315, E833–E847 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wei, M. et al. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. eBioMedicine. 55, 102766 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teodoro, J. S. et al. Chenodeoxycholic acid has non-thermogenic, mitodynamic anti-obesity effects in an in vitro CRISPR/Cas9 model of bile acid receptor TGR5 knockdown. Int. J. Mol. Sci. 22, 11738 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arab, J. P. et al. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 65, 350–362 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Bechmann, L. P. et al. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology 57, 1394–1406 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jahnel, J. et al. Serum bile acid levels in children with nonalcoholic fatty liver disease. J. Pediatr. Gastroenterol. Nutr. 61, 85 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Puri, P. et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology 67, 534–548 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Min, H.-K. et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 15, 665–674 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiao, N. et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 67, 1881–1891 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sinal, C. J. et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731–744 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Degirolamo, C. et al. Prevention of spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice by intestinal-specific farnesoid X receptor reactivation. Hepatology 61, 161–170 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, F. et al. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res 67, 863–867 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Pharmacological therapy of metabolic dysfunction-associated steatotic liver disease-driven hepatocellular carcinoma. Front. Pharmacol. 14, 1336216 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Z.-X., Shen, W. & Sun, H. Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non-alcoholic fatty liver disease. Hepatol. Int. 4, 741–748 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miyata, M. et al. Fibroblast growth factor 19 treatment ameliorates disruption of hepatic lipid metabolism in farnesoid X receptor (Fxr)-null mice. Biol. Pharm. Bull. 34, 1885–1889 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, I. et al. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis 28, 940–946 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kuang, J. et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab. 35, 1752–1766.e8 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mouzaki, M. et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS ONE 11, e0151829 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zisser, A., Ipsen, D. H. & Tveden-Nyborg, P. Hepatic stellate cell activation and inactivation in NASH-fibrosis—roles as putative treatment targets? Biomedicines 9, 365 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, M. et al. Roles of hepatic stellate cells in NAFLD: from the perspective of inflammation and fibrosis. Front. Pharmacol. 13, 958428 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schuster, S., Cabrera, D., Arrese, M. & Feldstein, A. E. Triggering and resolution of inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 15, 349–364 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carino, A. et al. Disruption of TFGβ-SMAD3 pathway by the nuclear receptor SHP mediates the antifibrotic activities of BAR704, a novel highly selective FXR ligand. Pharmacol. Res. 131, 17–31 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fiorucci, S. et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 127, 1497–1512 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fiorucci, S. et al. Cross-talk between farnesoid-X-receptor (FXR) and peroxisome proliferator-activated receptor γ contributes to the antifibrotic activity of FXR ligands in rodent models of liver cirrhosis. J. Pharmacol. Exp. Ther. 315, 58–68 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Renga, B. et al. SHP-dependent and -independent induction of peroxisome proliferator-activated receptor-γ by the bile acid sensor farnesoid X receptor counter-regulates the pro-inflammatory phenotype of liver myofibroblasts. Inflamm. Res. 60, 577–587 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, J. et al. SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis. Nat. Commun. 11, 240 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mencarelli, A. et al. The bile acid sensor farnesoid X receptor is a modulator of liver immunity in a rodent model of acute hepatitis. J. Immunol. 183, 6657–6666 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, M. et al. Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice. Hepatol. Commun. 1, 1024–1042 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, M. et al. Engineered fibroblast growth factor 19 reduces liver injury and resolves sclerosing cholangitis in Mdr2-deficient mice. Hepatology 63, 914–929 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keitel, V. et al. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem. Biophys. Res. Commun. 372, 78–84 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, G. et al. Conjugated secondary 12α-hydroxylated bile acids promote liver fibrogenesis. eBioMedicine. 66, 103290 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finn, P. D. et al. Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G412–G424 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khairnar, R., Islam, M. A., Fleishman, J. & Kumar, S. Shedding light on non-alcoholic fatty liver disease: pathogenesis, molecular mechanisms, models, and emerging therapeutics. Life Sci. 312, 121185 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dowman, J. K., Tomlinson, J. W. & Newsome, P. N. Pathogenesis of non-alcoholic fatty liver disease. QJM Int. J. Med. 103, 71–83 (2010).

    Article 
    CAS 

    Google Scholar 

  • Peng, C. et al. Non-alcoholic steatohepatitis: a review of its mechanism, models and medical treatments. Front. Pharmacol. 11, 603926 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiao, Y., Lu, Y. & Li, X. Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacol. Sin. 36, 44–50 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Legry, V. et al. Yin Yang 1 and farnesoid X receptor: a balancing act in non-alcoholic fatty liver disease? Gut 63, 1–2 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450, 736–740 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blättler, S. M. et al. Yin Yang 1 deficiency in skeletal muscle protects against rapamycin-induced diabetic-like symptoms through activation of insulin/IGF signaling. Cell Metab. 15, 505–517 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gordon, S., Akopyan, G., Garban, H. & Bonavida, B. Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 25, 1125–1142 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mu, N. et al. A novel NF-κB/YY1/microRNA-10a regulatory circuit in fibroblast-like synoviocytes regulates inflammation in rheumatoid arthritis. Sci. Rep. 6, 20059 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stovall, D. B., Sui, G., Stovall, D. B. & Sui, G. In Advances in Prostate Cancer (IntechOpen, 2013).

  • Van Quickelberghe, E. et al. A protein-protein interaction map of the TNF-induced NF-κB signal transduction pathway. Sci. Data 5, 180289 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ceccarelli, S. et al. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease. Oncotarget 6, 41434–41452 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sethi, J. K. & Hotamisligil, G. S. Metabolic Messengers: tumour necrosis factor. Nat. Metab. 3, 1302–1312 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, Y. et al. Yin Yang 1 promotes hepatic steatosis through repression of farnesoid X receptor in obese mice. Gut 63, 170–178 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vasavan, T. et al. Heart and bile acids—clinical consequences of altered bile acid metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1345–1355 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pu, J. et al. Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury. Eur. Heart J. 34, 1834–1845 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rainer, P. P. et al. Bile acids induce arrhythmias in human atrial myocardium–implications for altered serum bile acid composition in patients with atrial fibrillation. Heart Br. Card. Soc. 99, 1685–1692 (2013).

    CAS 

    Google Scholar 

  • Nilsson, L.-M. et al. Bile acids and lipoprotein metabolism: effects of cholestyramine and chenodeoxycholic acid on human hepatic mRNA expression. Biochem. Biophys. Res. Commun. 357, 707–711 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hanniman, E. A., Lambert, G., McCarthy, T. C. & Sinal, C. J. Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice. J. Lipid Res. 46, 2595–2604 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bishop-Bailey, D., Walsh, D. T. & Warner, T. D. Expression and activation of the farnesoid X receptor in the vasculature. Proc. Natl Acad. Sci. USA 101, 3668–3673 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. T. Y. et al. Farnesoid X receptor ligands inhibit vascular smooth muscle cell inflammation and migration. Arterioscler. Thromb. Vasc. Biol. 27, 2606–2611 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. FXR deficiency causes reduced atherosclerosis in Ldlr−/− mice. Arterioscler. Thromb. Vasc. Biol. 26, 2316–2321 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, G. L. et al. Effects of FXR in foam-cell formation and atherosclerosis development. Biochim. Biophys. Acta 1761, 1401–1409 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Desai, M. S. et al. Hypertrophic cardiomyopathy and dysregulation of cardiac energetics in a mouse model of biliary fibrosis. Hepatology 51, 2097–2107 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fryer, R. M. et al. G protein-coupled bile acid receptor 1 stimulation mediates arterial vasodilation through a K(Ca)1.1 (BK(Ca))-dependent mechanism. J. Pharmacol. Exp. Ther. 348, 421–431 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Eblimit, Z. et al. TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure-induced stress in mice. Cardiovasc. Ther. 36, e12462 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Duboc, H. et al. Crosstalk between the hepatologist and the cardiologist: a future place for the lithocholic acid as a coronary atheroma risk factor? Hepatology 56, 2426 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Inagaki, T. et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl Acad. Sci. USA 103, 3920–3925 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Begley, M., Gahan, C. G. M. & Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29, 625–651 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Úbeda, M. et al. Obeticholic acid reduces bacterial translocation and inhibits intestinal inflammation in cirrhotic rats. J. Hepatol. 64, 1049–1057 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Bernstein, H., Bernstein, C., Payne, C. M. & Dvorak, K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J. Gastroenterol. 15, 3329–3340 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Massafra, V. et al. Splenic dendritic cell involvement in FXR-mediated amelioration of DSS colitis. Biochim. Biophys. Acta 1862, 166–173 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gadaleta, R. M. et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60, 463–472 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ceulemans, L. J. et al. Farnesoid X receptor activation attenuates intestinal ischemia reperfusion injury in rats. PLoS ONE 12, e0169331 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verbeke, L. et al. The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats. Am. J. Pathol. 185, 409–419 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nijmeijer, R. M. et al. Farnesoid X receptor (FXR) activation and FXR genetic variation in inflammatory Bowel disease. PLoS ONE 6, e23745 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cipriani, S. et al. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS ONE 6, e25637 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ichikawa, R. et al. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology 136, 153–162 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Devlin, A. S. & Fischbach, M. A. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 11, 685–690 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, D. et al. The conserved non-coding sequences CNS6 and CNS9 control cytokine-induced rorc transcription during T helper 17 cell differentiation. Immunity 53, 614–626.e4 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, B.-H. et al. Foxp3(+) T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 9, 444–457 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paik, D. et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites. Nature 603, 907–912 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sinha, S. R. et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 27, 659–670.e5 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Das, P., MarciÅ¡auskas, S., Ji, B. & Nielsen, J. Metagenomic analysis of bile salt biotransformation in the human gut microbiome. BMC Genomics 20, 517 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hsu, C. L. & Schnabl, B. The gut–liver axis and gut microbiota in health and liver disease. Nat. Rev. Microbiol. 21, 719–733 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, M. et al. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct. Target. Ther. 8, 1–26 (2023).

    Google Scholar 

  • Fukunishi, S. et al. Lipopolysaccharides accelerate hepatic steatosis in the development of nonalcoholic fatty liver disease in Zucker rats. J. Clin. Biochem. Nutr. 54, 39–44 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alonso-Peña, M. et al. Impact of liver inflammation on bile acid side chain shortening and amidation. Cells 11, 3983 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venkatesh, M. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and toll-like receptor 4. Immunity 41, 296–310 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Little, M. et al. Understanding the physiological functions of the host xenobiotic-sensing nuclear receptors PXR and CAR on the gut microbiome using genetically modified mice. Acta Pharm. Sin. B. 12, 801–820 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Phelan, J. P. et al. Rethinking the bile acid/gut microbiome axis in cancer. Oncotarget 8, 115736–115747 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yasuda, H. et al. Involvement of membrane-type bile acid receptor M-BAR/TGR5 in bile acid-induced activation of epidermal growth factor receptor and mitogen-activated protein kinases in gastric carcinoma cells. Biochem. Biophys. Res. Commun. 354, 154–159 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nagathihalli, N. S. et al. Novel mechanistic insights into ectodomain shedding of EGFR Ligands Amphiregulin and TGF-α: impact on gastrointestinal cancers driven by secondary bile acids. Cancer Res. 74, 2062–2072 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, J., Gong, J., Geng, J. & Song, Y. Deoxycholic acid induces the overexpression of intestinal mucin, MUC2, via NF-kB signaling pathway in human esophageal adenocarcinoma cells. BMC Cancer 8, 333 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ward, J. B. J. et al. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G550–G558 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Ni, Z. et al. TGR5-HNF4α axis contributes to bile acid-induced gastric intestinal metaplasia markers expression. Cell Death Discov. 6, 56 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, Z. et al. FXR ligands protect against hepatocellular inflammation via SOCS3 induction. Cell. Signal. 24, 1658–1664 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anwer, M. S. Intracellular signaling by bile acids. J. Bio Sci. 20, 1–23 (2012).

    Article 

    Google Scholar 

  • Bernstein, H. et al. Bile acids as carcinogens in human gastrointestinal cancers. Mutat. Res. 589, 47–65 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jia, W., Xie, G. & Jia, W. Bile acid–microbiota cross-talk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yao, Z. et al. Ursodeoxycholic acid inhibits glioblastoma progression via endoplasmic reticulum stress related apoptosis and synergizes with the proteasome inhibitor bortezomib. ACS Chem. Neurosci. 11, 1337–1346 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, S. et al. Synergistic effect of ursodeoxycholic acid on the antitumor activity of sorafenib in hepatocellular carcinoma cells via modulation of STAT3 and ERK. Int. J. Mol. Med. 42, 2551–2559 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, H. et al. Mechanism of apoptotic effects induced selectively by ursodeoxycholic acid on human hepatoma cell lines. World J. Gastroenterol. 13, 1652–1658 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, S.-C., Choi, J. E., Kang, H. S. & Han, S. I. Ursodeoxycholic acid switches oxaliplatin-induced necrosis to apoptosis by inhibiting reactive oxygen species production and activating p53-caspase 8 pathway in HepG2 hepatocellular carcinoma. Int. J. Cancer 126, 1582–1595 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, Y.-C., Chiu, C.-F., Hsueh, C.-T. & Hsueh, C.-T. The role of bile acids in cellular invasiveness of gastric cancer. Cancer Cell Int. 18, 75 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, S.-C. et al. Lipid raft-dependent death receptor 5 (DR5) expression and activation are critical for ursodeoxycholic acid-induced apoptosis in gastric cancer cells. Carcinogenesis 32, 723–731 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Im, E. & Martinez, J. D. Ursodeoxycholic acid (UDCA) can inhibit deoxycholic acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells. J. Nutr. 134, 483–486 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Im, E., Akare, S., Powell, A. & Martinez, J. D. Ursodeoxycholic acid can suppress deoxycholic acid-induced apoptosis by stimulating Akt/PKB-dependent survival signaling. Nutr. Cancer 51, 110–116 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saeki, T. et al. Ursodeoxycholic acid protects colon cancer HCT116 cells from deoxycholic acid-induced apoptosis by inhibiting apoptosome formation. Nutr. Cancer 64, 617–626 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alpini, G. et al. Tauroursodeoxycholate inhibits human cholangiocarcinoma growth via Ca2+-, PKC-, and MAPK-dependent pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G973–G982 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mikó, E. et al. Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochim. Biophys. Acta Bioenerg. 1859, 958–974 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Goldberg, A. A., Titorenko, V. I., Beach, A. & Sanderson, J. T. Bile acids induce apoptosis selectively in androgen-dependent and -independent prostate cancer cells. PeerJ 1, e122 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, Q. et al. Bile acids upregulate BRCA1 and downregulate estrogen receptor 1 gene expression in ovarian cancer cells. Eur. J. Cancer Prev. 27, 553–556 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, W. et al. Apoptosis of human gastric carcinoma SGC-7901 induced by deoxycholic acid via the mitochondrial-dependent pathway. Appl. Biochem. Biotechnol. 171, 1061–1071 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, J. et al. Lithocholic acid down-regulation of NF-kappaB activity through vitamin D receptor in colonic cancer cells. J. Steroid Biochem. Mol. Biol. 111, 37–40 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vogel, S. M. et al. Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2. Proc. Natl Acad. Sci. USA 109, 16906–16910 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luu, T. H. et al. Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells. Cell. Oncol. Dordr. 41, 13–24 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fukase, K. et al. Bile acids repress E-cadherin through the induction of Snail and increase cancer invasiveness in human hepatobiliary carcinoma. Cancer Sci. 99, 1785–1792 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoon, J.-H. et al. Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line. Gastroenterology 122, 985–993 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Debruyne, P. R. et al. Bile acids stimulate invasion and haptotaxis in human colorectal cancer cells through activation of multiple oncogenic signaling pathways. Oncogene 21, 6740–6750 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, J.-H. et al. Bile acids promote gastric intestinal metaplasia by upregulating CDX2 and MUC2 expression via the FXR/NF-κB signalling pathway. Int. J. Oncol. 54, 879–892 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carino, A. et al. The bile acid receptor GPBAR1 (TGR5) is expressed in human gastric cancers and promotes epithelial-mesenchymal transition in gastric cancer cell lines. Oncotarget 7, 61021–61035 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jang, E. S. et al. Sodium taurocholate cotransporting polypeptide mediates dual actions of deoxycholic acid in human hepatocellular carcinoma cells: enhanced apoptosis versus growth stimulation. J. Cancer Res. Clin. Oncol. 140, 133–144 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yen, C.-J. et al. Bile acid exposure up-regulates tuberous sclerosis complex 1/mammalian target of rapamycin pathway in Barrett’s-associated esophageal adenocarcinoma. Cancer Res. 68, 2632–2640 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prichard, D. O. et al. Deoxycholic acid promotes development of gastroesophageal reflux disease and Barrett’s oesophagus by modulating integrin-αv trafficking. J. Cell. Mol. Med. 21, 3612–3625 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joshi, S. et al. Bile acids-mediated overexpression of MUC4 via FAK-dependent c-Jun activation in pancreatic cancer. Mol. Oncol. 10, 1063–1077 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. et al. The membrane bile acid receptor TGR5 drives cell growth and migration via activation of the JAK2/STAT3 signaling pathway in non-small cell lung cancer. Cancer Lett. 412, 194–207 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krishnamurthy, K., Wang, G., Rokhfeld, D. & Bieberich, E. Deoxycholate promotes survival of breast cancer cells by reducing the level of pro-apoptotic ceramide. Breast Cancer Res. BCR 10, R106 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Chen, Z. et al. The role of fibroblast growth factor 19 in hepatocellular carcinoma. Am. J. Pathol. 191, 1180–1192 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. Dissecting the role of the FGF19-FGFR4 signaling pathway in cancer development and progression. Front. Cell Dev. Biol. 8, 95 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zou, Y. et al. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat. Commun. 13, 2672 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J. et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 7, 1–23 (2022).

    Google Scholar 

  • Wang, Y. et al. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct. Target. Ther. 8, 1–45 (2023).

    Google Scholar 

  • Lewerenz, J. et al. The cystine/glutamate antiporter system xc− in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid. Redox Signal. 18, 522–555 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iseda, N. et al. Ferroptosis is induced by lenvatinib through fibroblast growth factor receptor‐4 inhibition in hepatocellular carcinoma. Cancer Sci. 113, 2272–2287 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi, Y. et al. The bile acid membrane receptor TGR5 in cancer: friend or foe? Molecules 27, 5292 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiong, Q. et al. Metabolite-sensing G protein coupled receptor TGR5 protects host from viral infection through amplifying type I interferon responses. Front. Immunol. 9, 2289 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, M.-M. et al. Virus-induced accumulation of intracellular bile acids activates the TGR5-β-arrestin-SRC axis to enable innate antiviral immunity. Cell Res. 29, 193–205 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gulen, M. F. et al. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature 620, 374–380 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ou, L., Zhang, A., Cheng, Y. & Chen, Y. The cGAS-STING pathway: a promising immunotherapy target. Front. Immunol. 12, 795048 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes. Pharmacol. Res. Perspect. 5, e00329 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Comparative potency of obeticholic acid and natural bile acids on FXR in hepatic and intestinal in vitro cell models. Pharmacol. Res. Perspect. 5, e00368 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ratziu, Y. et al. EDP-305 in patients with NASH: a phase II double-blind placebo-controlled dose-ranging study. J. Hepatol. 76, 506–517 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pellicciari, R. et al. Discovery of 3α,7α,11β-trihydroxy-6α-ethyl-5β-cholan-24-oic acid (TC-100), a novel bile acid as potent and highly selective FXR agonist for enterohepatic disorders. J. Med. Chem. 59, 9201–9214 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soisson, S. M. et al. Identification of a potent synthetic FXR agonist with an unexpected mode of binding and activation. Proc. Natl Acad. Sci. USA 105, 5337–5342 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, C. et al. Discovery of betulinic acid derivatives as potent intestinal farnesoid X receptor antagonists to ameliorate nonalcoholic steatohepatitis. J. Med. Chem. 65, 13452–13472 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Panzitt, K., Zollner, G., Marschall, H.-U. & Wagner, M. Recent advances on FXR-targeting therapeutics. Mol. Cell. Endocrinol. 552, 111678 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alemi, F. et al. The TGR5 receptor mediates bile acid-induced itch and analgesia. J. Clin. Invest. 123, 1513–1530 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gege, C. et al. Knocking on FXR’s Door: The. Curr. Top. Med. Chem. 14, 2143–2158 (2014).

  • Dwivedi, S. K. D. et al. Bile acid receptor agonist GW4064 regulates PPARγ COactivator-1α Expression through Estrogen Receptor-related Receptor α. Mol. Endocrinol. 25, 922–932 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gege, C. et al. In Bile Acids and Their Receptors (eds. Fiorucci, S. & Distrutti, E.) 167–205 (Springer International Publishing, 2019).

  • Tully, D. C. et al. Discovery of tropifexor (LJN452), a highly potent non-bile acid FXR agonist for the treatment of cholestatic liver diseases and nonalcoholic steatohepatitis (NASH). J. Med. Chem. 60, 9960–9973 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patel, K. et al. Cilofexor, a nonsteroidal FXR agonist, in patients with noncirrhotic NASH: a phase 2 randomized controlled trial. Hepatology 72, 58–71 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, L. et al. Structural insight into the molecular mechanism of cilofexor binding to the farnesoid X receptor. Biochem. Biophys. Res. Commun. 595, 1–6 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kremoser, C. FXR agonists for NASH: how are they different and what difference do they make? J. Hepatol. 75, 12–15 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Trauner, M. et al. The nonsteroidal farnesoid X receptor agonist cilofexor (GS‐9674) improves markers of cholestasis and liver injury in patients with primary sclerosing cholangitis. Hepatology 70, 788 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Al-Khaifi, A., Rudling, M. & Angelin, B. An FXR agonist reduces bile acid synthesis independently of increases in FGF19 in healthy volunteers. Gastroenterology 155, 1012–1016 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Traussnigg, S. et al. Open-label phase II study evaluating safety and efficacy of the non-steroidal farnesoid X receptor agonist PX-104 in non-alcoholic fatty liver disease. Wien. Klin. Wochenschr. 133, 441–451 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chianelli, D. et al. Nidufexor (LMB763), a novel FXR modulator for the treatment of nonalcoholic steatohepatitis. J. Med. Chem. 63, 3868–3880 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Safety, pharmacokinetics, pharmacodynamics, and formulation of liver‐distributed farnesoid X‐receptor agonist TERN‐101 in healthy volunteers. Clin Pharmacol Drug Dev 10, 1198–1208 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Genin, M. J. et al. Discovery of 6-(4-{[5-Cyclopropyl-3-(2,6-dichlorophenyl)isoxazol-4-yl]methoxy}piperidin-1-yl)-1-methyl-1H-indole-3-carboxylic acid: a novel FXR agonist for the treatment of dyslipidemia. J. Med. Chem. 58, 9768–9772 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carpenter, J. et al. Discovery of BMS-986318, a potent nonbile acid FXR agonist for the treatment of nonalcoholic steatohepatitis. ACS Med. Chem. Lett. 12, 1413–1420 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nara, S. J. et al. Discovery of BMS-986339, a pharmacologically differentiated farnesoid X receptor agonist for the treatment of nonalcoholic steatohepatitis. J. Med. Chem. 65, 8948–8960 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mo, C. et al. Discovery of HPG1860, a structurally novel nonbile acid FXR agonist currently in clinical development for the treatment of nonalcoholic steatohepatitis. J. Med. Chem. 66, 9363–9375 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Flatt, B. et al. Discovery of XL335 (WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor (FXR). J. Med. Chem. 52, 904–907 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Evans, M. J. et al. A synthetic farnesoid X receptor (FXR) agonist promotes cholesterol lowering in models of dyslipidemia. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G543–G552 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Downes, M. et al. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol. Cell. 11, 1079–1092 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, S. et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat. Med. 21, 159–165 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harrison, S. A. et al. A structurally optimized FXR agonist, MET409, reduced liver fat content over 12 weeks in patients with non-alcoholic steatohepatitis. J. Hepatol. 75, 25–33 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. et al. A novel intestinal-restricted FXR agonist. Bioorg. Med. Chem. Lett. 27, 3386–3390 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, W. et al. Discovery of LH10, a novel fexaramine-based FXR agonist for the treatment of liver disease. Bioorg. Chem. 143, 107071 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, C. et al. Discovery of 4-aminophenylacetamide derivatives as intestine-specific farnesoid X receptor antagonists for the potential treatment of nonalcoholic steatohepatitis. Eur. J. Med. Chem. 264, 115992 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xi, L. et al. Licraside as novel potent FXR agonist for relieving cholestasis: structure-based drug discovery and biological evaluation studies. Front. Pharmacol. 14, 1197856 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao, Z. et al. The discovery of a new potent FXR agonist based on natural product screening. Bioorg. Chem. 143, 106979 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J. Clin. Invest. 112, 1678–1687 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, D. et al. Farnesoid X receptor activation protects liver from ischemia/reperfusion injury by up-regulating small heterodimer partner in Kupffer cells. Hepatol. Commun. 4, 540–554 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S., Wang, J., Liu, Q. & Harnish, D. C. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J. Hepatol. 51, 380–388 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, X. et al. Activation of farnesoid X receptor (FXR) protects against fructose-induced liver steatosis via inflammatory inhibition and ADRP reduction. Biochem. Biophys. Res. Commun. 450, 117–123 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hartman, H. B. et al. Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR−/− and apoE−/− mice. J. Lipid Res. 50, 1090–1100 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernandez, E. D. et al. Tropifexor‐mediated abrogation of steatohepatitis and fibrosis is associated with the antioxidative gene expression profile in rodents. Hepatol. Commun. 3, 1085–1097 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwabl, P. et al. The non-steroidal FXR agonist cilofexor improves portal hypertension and reduces hepatic fibrosis in a rat NASH model. Biomedicines 9, 60 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Papazyan, R. et al. FXR activation by obeticholic acid or nonsteroidal agonists induces a human-like lipoprotein cholesterol change in mice with humanized chimeric liver. J. Lipid Res. 59, 982–993 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miyata, S. et al. Discovery, optimization, and evaluation of non-bile acid FXR/TGR5 dual agonists. Sci. Rep. 11, 9196 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nemetchek, M. D. et al. A structural mechanism of nuclear receptor biased agonism. Proc. Natl Acad. Sci. USA 119, e2215333119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pathak, P. et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G‐protein bile acid receptor‐1 signaling to improve metabolism. Hepatology 68, 1574 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, W., Akinrotimi, O., Dadlani, N. & Anakk, S. FXR regulates adipose tissue remodeling during obesity. FASEB J. 35, S1 (2021).

  • Li, H. et al. Ursodeoxycholic acid treatment restores gut microbiota and alleviates liver inflammation in non-alcoholic steatohepatitic mouse model. Front. Pharmacol. 12, 788558 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahmad, Z. et al. Cholic acid for hepatic steatosis in patients with lipodystrophy: a randomized, controlled trial. Eur. J. Endocrinol. 168, 771–778 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rao, A. S. et al. Chenodeoxycholate in females with irritable bowel syndrome-constipation: a pharmacodynamic and pharmacogenetic analysis. Gastroenterology 139, 1549–1558 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Enanta Pharmaceuticals, Inc. A Phase 2 Dose Ranging, Randomized, Double Blind, Placebo-Controlled Study Evaluating the Safety, Tolerability, Pharmacokinetics and Efficacy of EDP-305 in Subjects With Primary Biliary Cholangitis (PBC) With or Without an Inadequate Response to Ursodeoxycholic Acid (UDCA) (2021).

  • US National Library of Medicine. ClinicalTrials.gov (NCT01998659) (2014).

  • US National Library of Medicine. ClinicalTrials.gov (NCT00499629) https://clinicaltrials.gov/study/NCT00499629 (2008).

  • US National Library of Medicine. ClinicalTrials.gov (NCT00509756) https://clinicaltrials.gov/study/NCT00509756 (2010) .

  • US National Library of Medicine. ClinicalTrials.gov (NCT03890120) (2023).

  • Sanyal, A. J. et al. Tropifexor for nonalcoholic steatohepatitis: an adaptive, randomized, placebo-controlled phase 2a/b trial. Nat. Med. 29, 392–400 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schramm, C. et al. Farnesoid X receptor agonist tropifexor attenuates cholestasis in a randomised trial in patients with primary biliary cholangitis. JHEP Rep. Innov. Hepatol. 4, 100544 (2022).

    Article 

    Google Scholar 

  • Hepagene (Shanghai) Co., Ltd. A Randomized, Double-Blind, Placebo Controlled, Single and Multiple Ascending Doses (SAD/MAD) Study Following Oral Administration in Healthy Subjects to Evaluate the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of HPG1860 (2022).

  • Hepagene (Shanghai) Co., Ltd. A Randomized, Double-blind, Placebo-controlled Parallel Group Phase 2a Study to Evaluate the Efficacy and Safety of HPG1860 in Subjects With Nonalcoholic Steatohepatitis (2022).

  • Terns, Inc. A Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Phase 2a Clinical Trial to Evaluate the Safety, Tolerability, Efficacy, and Pharmacokinetics of Orally Administered TERN-101 Tablets in Adult Patients With Presumed Non-Cirrhotic Non-Alcoholic Steatohepatitis (NASH) (2022).

  • Terns, Inc. A Multicenter, Randomized, Double-Blind, Placebo-Controlled, Phase 2a Clinical Study to Evaluate the Safety, Efficacy, Pharmacokinetics, and Pharmacodynamics of Orally Administered TERN-501 as Monotherapy as Well as in Combination With TERN-101 in Noncirrhotic Adults With Presumed Non-Alcoholic Steatohepatitis (NASH) (2023).

  • Metacrine, Inc. A Phase 2A Study to Evaluate MET409 Alone or in Combination With Empagliflozin in Patients With Type 2 Diabetes Mellitus (T2DM) and Nonalcoholic Steatohepatitis (NASH) (2021).

  • Calderon, G. et al. Ileo-colonic delivery of conjugated bile acids improves glucose homeostasis via colonic GLP-1-producing enteroendocrine cells in human obesity and diabetes. EBioMedicine 55, 102759 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sinha, S. R. The Role of Secondary Bile Acids in Intestinal Inflammation (2023).

  • First Affiliated Hospital Xi’an Jiaotong University. Effect of UDCA on the New Onset Diabetes and Glucose Intolerance Induced by Statin-A Multicenter, Prospective, Random Controlled Trial (2022).

  • Mueller, M. et al. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity. J. Hepatol. 62, 1398–1404 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nevens, F. et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N. Engl. J. Med. 375, 631–643 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kowdley, K. V. et al. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. J. Hepatol. 73, 94–101 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mudaliar, S. et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145, 574–582.e1 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • US National Library of Medicine. ClinicalTrials.gov (NCT00501592) (2012).

  • Siddiqui, M. S. et al. Impact of obeticholic acid on the lipoprotein profile in patients with non-alcoholic steatohepatitis. J. Hepatol. 72, 25–33 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pockros, P. J. et al. CONTROL: a randomized phase 2 study of obeticholic acid and atorvastatin on lipoproteins in nonalcoholic steatohepatitis patients. Liver Int. 39, 2082–2093 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sanyal, A. J. et al. Results from a new efficacy and safety analysis of the REGENERATE trial of obeticholic acid for treatment of pre-cirrhotic fibrosis due to non-alcoholic steatohepatitis. J. Hepatol. 79, 1110–1120 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, J. et al. IL‐31 levels correlate with pruritus in patients with cholestatic and metabolic liver diseases and is farnesoid X receptor responsive in NASH. Hepatology 77, 20 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Intercept Pharmaceuticals, Inc. 2023 Q2 – Results – Earnings Call Presentation (NASDAQ:ICPT) | Seeking Alpha (2023).

  • Di Pasqua, L. G. et al. FXR agonists INT-787 and OCA increase RECK and inhibit liver steatosis and inflammation in diet-induced ob/ob mouse model of NASH. Liver Int. 44, 214–227 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Intercept Pharmaceuticals. Intercept Announces Development Program for Next-Generation FXR Agonist INT-787 in Severe Alcohol-Associated Hepatitis. https://www.interceptpharma.com/about-us/news/?id=2550372(2022).

  • Intercept Pharmaceuticals. A Phase 2a, Randomized, Double-Blind, Placebo-Controlled, Multicenter, Dose-escalation, Proof-of-Concept Study Evaluating the Safety, Tolerability, Efficacy and Pharmacokinetics of INT-787 in Subjects With Severe Alcohol Associated Hepatitis (2024).

  • Burris, T. P. et al. Nuclear receptors and their selective pharmacologic modulators. Pharmacol. Rev. 65, 710–778 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Thomas, A. M. et al. Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine. Hepatology 51, 1410–1419 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Massafra, V., Pellicciari, R., Gioiello, A. & van Mil, S. W. C. Progress and challenges of selective farnesoid X receptor modulation. Pharmacol. Ther. 191, 162–177 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pellicciari, R. et al. Back door modulation of the farnesoid X receptor: design, synthesis, and biological evaluation of a series of side chain modified chenodeoxycholic acid derivatives. J. Med. Chem. 49, 4208–4215 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meijer, F. A., Leijten-van de Gevel, I. A., de Vries, R. M. J. M. & Brunsveld, L. Allosteric small molecule modulators of nuclear receptors. Mol. Cell. Endocrinol. 485, 20–34 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, D. et al. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity. EMBO J. 34, 184–199 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Renga, B. et al. Discovery that theonellasterol a marine sponge sterol is a highly selective FXR antagonist that protects against liver injury in cholestasis. PLoS ONE 7, e30443 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Urizar, N. L. et al. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 296, 1703–1706 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, J. et al. The hypolipidemic natural product guggulsterone acts as an antagonist of the bile acid receptor. Mol. Endocrinol. 16, 1590–1597 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cui, J. et al. Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pump. J. Biol. Chem. 278, 10214–10220 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Szapary, P. O. et al. Guggulipid for the treatment of hypercholesterolemia: a randomized controlled trial. JAMA 290, 765–772 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pellicciari, R. et al. Discovery of 6α-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem. 52, 7958–7961 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Renga, B. et al. Reversal of endothelial dysfunction by GPBAR1 agonism in portal hypertension involves a AKT/FOXOA1 dependent regulation of H2S generation and endothelin-1. PLoS ONE 10, e0141082 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, F. et al. Structural basis of GPBAR activation and bile acid recognition. Nature 587, 499–504 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. et al. Discovery and biological evaluation of cholic acid derivatives as potent TGR5 positive allosteric modulators. Bioorg. Med. Chem. 92, 117418 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nakhi, A. et al. 7-Methylation of chenodeoxycholic acid derivatives yields a substantial increase in TGR5 receptor potency. J. Med. Chem. 62, 6824–6830 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sato, H. et al. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem. Biophys. Res. Commun. 362, 793–798 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Genet, C. et al. Structure−activity relationship study of betulinic acid, a novel and selective TGR5 agonist, and its synthetic derivatives: potential impact in diabetes. J. Med. Chem. 53, 178–190 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Budzik, B. W. et al. Synthesis and structure–activity relationships of a series of 3-aryl-4-isoxazolecarboxamides as a new class of TGR5 agonists. Bioorg. Med. Chem. Lett. 20, 1363–1367 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Evans, K. A. et al. Discovery of 3-aryl-4-isoxazolecarboxamides as TGR5 receptor agonists. J. Med. Chem. 52, 7962–7965 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hodge, R. J. et al. Safety, pharmacokinetics, and pharmacodynamic effects of a selective TGR5 agonist, SB-756050, in betes. Clin. Pharmacol. Drug Dev. 2, 213–222 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Herbert, M. R. et al. Synthesis and SAR of 2-aryl-3-aminomethylquinolines as agonists of the bile acid receptor TGR5. Bioorg. Med. Chem. Lett. 20, 5718–5721 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Futatsugi, K. et al. Optimization of triazole-based TGR5 agonists towards orally available agents. MedChemComm 4, 205–210 (2012).

    Article 

    Google Scholar 

  • Piotrowski, D. W. et al. Identification of tetrahydropyrido[4,3-d]pyrimidine amides as a new class of orally bioavailable TGR5 agonists. ACS Med. Chem. Lett. 4, 63–68 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agarwal, S. et al. Discovery of a potent and orally efficacious TGR5 receptor agonist. ACS Med. Chem. Lett. 7, 51–55 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, D. P. et al. Discovery of trifluoromethyl(pyrimidin-2-yl)azetidine-2-carboxamides as potent, orally bioavailable TGR5 (GPBAR1) agonists: structure–activity relationships, lead optimization, and chronic in vivo efficacy. J. Med. Chem. 57, 3263–3282 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zambad, S. P. et al. TRC210258, a novel TGR5 agonist, reduces glycemic and dyslipidemic cardiovascular risk in animal models of diabesity. Diabetes Metab. Syndr. Obes. Targets Ther. 7, 1–14 (2013).

    Google Scholar 

  • Zhao, S. et al. Design, synthesis and evaluation of 3-phenoxypyrazine-2-carboxamide derivatives as potent TGR5 agonists. RSC Adv. 12, 3618–3629 (2022).

  • Picon, S. et al. Discovery, structure–activity relationships, and in vivo activity of dihydropyridone agonists of the bile acid receptor TGR5. J. Med. Chem. 66, 11732–11760 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duan, H. et al. Design, synthesis, and antidiabetic activity of 4-phenoxynicotinamide and 4-phenoxypyrimidine-5-carboxamide derivatives as potent and orally efficacious TGR5 agonists. J. Med. Chem. 55, 10475–10489 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Briere, D. A. et al. Novel small molecule agonist of TGR5 possesses anti-diabetic effects but causes gallbladder filling in mice. PLoS ONE 10, e0136873 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Oliveira, M. C. et al. Bile acid receptor agonists INT747 and INT777 decrease oestrogen deficiency-related postmenopausal obesity and hepatic steatosis in mice. Biochim. Biophys. Acta BBA Mol. Basis Dis. 1862, 2054–2062 (2016).

    Article 

    Google Scholar 

  • Carino, A. et al. Gpbar1 agonism promotes a Pgc-1α-dependent browning of white adipose tissue and energy expenditure and reverses diet-induced steatohepatitis in mice. Sci. Rep. 7, 13689 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miyazaki-Anzai, S. et al. Simultaneous inhibition of FXR and TGR5 exacerbates atherosclerotic formation. J. Lipid Res. 59, 1709–1713 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miyazaki-Anzai, S. et al. Dual activation of the bile acid nuclear receptor FXR and G-protein-coupled receptor TGR5 protects mice against atherosclerosis. PLoS ONE 9, e108270 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, T. et al. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol. Endocrinol. 25, 1066–1071 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhuo, N. et al. Discovery of betulinic acid derivatives as gut-restricted TGR5 agonists: Balancing the potency and physicochemical properties. Bioorg. Chem. 144, 107132 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brighton, C. A. et al. Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein–coupled bile acid receptors. Endocrinology 156, 3961–3970 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tough, I. R., Schwartz, T. W. & Cox, H. M. Synthetic G protein-coupled bile acid receptor agonists and bile acids act via basolateral receptors in ileal and colonic mucosa. Neurogastroenterol. Motil. 32, e13943 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lasalle, M. et al. Topical intestinal aminoimidazole agonists of G-protein-coupled bile acid receptor 1 promote glucagon like peptide-1 secretion and improve glucose tolerance. J. Med. Chem. 60, 4185–4211 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duan, H. et al. Discovery of intestinal targeted TGR5 agonists for the treatment of type 2 diabetes. J. Med. Chem. 58, 3315–3328 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, H. et al. Intestinally-targeted TGR5 agonists equipped with quaternary ammonium have an improved hypoglycemic effect and reduced gallbladder filling effect. Sci. Rep. 6, 28676 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, T. et al. Design of gut-restricted thiazolidine agonists of G protein-coupled bile acid receptor 1 (GPBAR1, TGR5). J. Med. Chem. 61, 7589–7613 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoguet, V. et al. Beyond the rule of 5: impact of PEGylation with various polymer sizes on pharmacokinetic properties, structure–properties relationships of mPEGylated small agonists of TGR5 receptor. J. Med. Chem. 64, 1593–1610 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zou, Q. et al. 4-Benzofuranyloxynicotinamide derivatives are novel potent and orally available TGR5 agonists. Eur. J. Med. Chem. 82, 1–15 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Han, F. et al. Design of G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) soft drugs with reduced gallbladder-filling effects. Eur. J. Med. Chem. 203, 112619 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, H. S. & Jung, C. H. Oral semaglutide, the first ingestible glucagon-like peptide-1 receptor agonist: could it be a magic bullet for type 2 diabetes? Int. J. Mol. Sci. 22, 9936 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Comeglio, P. et al. INT-767 prevents NASH and promotes visceral fat brown adipogenesis and mitochondrial function. J. Endocrinol. 238, 107–127 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jadhav, K. et al. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR. Mol. Metab. 9, 131–140 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Y.-B., Liu, X.-Y. & Zhan, W. Farnesoid X receptor agonist INT-767 attenuates liver steatosis and inflammation in rat model of nonalcoholic steatohepatitis. Drug Des. Devel. Ther. 12, 2213–2221 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu, M. et al. Deoxyschizandrin ameliorates obesity and non-alcoholic fatty liver disease: Involvement of dual Farnesyl X receptor/G protein-coupled bile acid receptor 1 activation and leptin sensitization. Phytother. Res. 37, 2771–2786 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sarvagalla, S., Kolapalli, S. P. & Vallabhapurapu, S. The two sides of YY1 in cancer: a friend and a foe. Front. Oncol. 9, 1230 (2019).

  • Vega, M. I., Jazirehi, A. R., Huerta-Yepez, S. & Bonavida, B. Rituximab-induced inhibition of YY1 and Bcl-xL expression in ramos non-Hodgkin’s lymphoma cell line via inhibition of NF-κB activity: role of YY1 and Bcl-xL in Fas resistance and chemoresistance, respectively. J. Immunol. 175, 2174–2183 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garbán, H. J. & Bonavida, B. Nitric oxide inhibits the transcription repressor yin-yang 1 binding activity at the silencer region of the fas promoter: a pivotal role for nitric oxide in the up-regulation of fas gene expression in human tumor cells. J. Immunol. 167, 75–81 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Bonavida, B. & Baritaki, S. Dual role of NO donors in the reversal of tumor cell resistance and EMT: Downregulation of the NF-κB/Snail/YY1/RKIP circuitry. Nitric Oxide 24, 1–7 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, N. et al. microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene 32, 5078–5088 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, T. et al. MiR-186 inhibits proliferation, migration, and invasion of non-small cell lung cancer cells by downregulating Yin Yang 1. Cancer Biomark. 21, 221–228 (2018).

    Article 

    Google Scholar 

  • Zhang, Y. et al. miR‑29a suppresses IL‑13‑induced cell invasion by inhibiting YY1 in the AKT pathway in lung adenocarcinoma A549 cells. Oncol. Rep. 39, 2613–2623 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, W.-Y. et al. MicroRNA-181 targets Yin Yang 1 expression and inhibits cervical cancer progression. Mol. Med. Rep. 11, 4541–4546 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, Y. et al. miR‑218 inhibits the proliferation of human glioma cells through downregulation of Yin Yang 1. Mol. Med. Rep. 17, 1926–1932 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, W. et al. Design, synthesis, and biological studies of dual URAT1 inhibitor and FXR agonist based on benzbromarone. Bioorg. Med. Chem. 75, 117073 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ren, Q. et al. Discovery of the first-in-class intestinal restricted FXR and FABP1 dual modulator ZLY28 for the treatment of nonalcoholic fatty liver disease. J. Med. Chem. 66, 6082–6104 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fiorucci, S. et al. Discovery of a potent and orally active dual GPBAR1/CysLT1R modulator for the treatment of metabolic fatty liver disease. Front. Pharmacol. 13, 858137 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fiorillo, B. et al. Discovery of a novel class of dual GPBAR1 agonists–RORγt inverse agonists for the treatment of IL-17-mediated disorders. ACS Omega 8, 5983–5994 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shiragannavar, V. D. et al. The ameliorating effect of withaferin A on high-fat diet-induced non-alcoholic fatty liver disease by acting as an LXR/FXR dual receptor activator. Front. Pharmacol. 14, 1135952 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Festa, C. et al. Investigation around the oxadiazole core in the discovery of a new chemotype of potent and selective FXR antagonists. ACS Med. Chem. Lett. 10, 504–510 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finamore, C. et al. Expanding the library of 1,2,4-oxadiazole derivatives: discovery of new farnesoid X receptor (FXR) antagonists/pregnane X receptor (PXR) agonists. Molecules 28, 2840 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamashita, Y. et al. Discovery of FXR/PPARγ dual partial agonist. Bioorg. Med. Chem. 85, 117238 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lebovitz, H. E. Thiazolidinediones: the forgotten diabetes medications. Curr. Diab. Rep. 19, 151 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J., Carlson, H. A. & Scott, E. E. The structure and characterization of human cytochrome P450 8B1 supports future drug design for nonalcoholic fatty liver disease and diabetes. J. Biol. Chem. 298, 102344 (2022).

  • DePaoli, A. M. et al. FGF19 analog as a surgical factor mimetic that contributes to metabolic effects beyond glucose homeostasis. Diabetes 68, 1315–1328 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harrison, S. A. et al. NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis. Hepatology 71, 1198–1212 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harrison, S. A. et al. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 391, 1174–1185 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Novel regulatory factors and small-molecule inhibitors of FGFR4 in cancer. Front. Pharmacol. 12, 633453 (2021).

  • Lang, L. & Teng, Y. Fibroblast growth factor receptor 4 targeting in cancer: new insights into mechanisms and therapeutic strategies. Cells 8, 31 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, X. et al. Insight into the design of FGFR4 selective inhibitors in cancer therapy: prospects and challenges. Eur. J. Med. Chem. 263, 115947 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, H.-Y. et al. Discovery of potent PROTACs targeting EGFR mutants through the optimization of covalent EGFR ligands. J. Med. Chem. 65, 4709–4726 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, L. et al. Discovery of a selective and orally bioavailable FGFR2 degrader for treating gastric cancer. J. Med. Chem. 66, 7438–7453 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harach, T. et al. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci. Rep. 2, 430 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shang, Q. et al. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G419–G424 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nwose, O. M. & Jones, M. R. Atypical mechanism of glucose modulation by colesevelam in patients with type 2 diabetes. Clin. Med. Insights Endocrinol. Diabetes 6, 75–79 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brufau, G. et al. Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology 52, 1455–1464 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hansen, M. et al. Bile acid sequestrants for glycemic control in patients with type 2 diabetes: a systematic review with meta-analysis of randomized controlled trials. J. Diabetes Complications. 31, 918–927 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Potthoff, M. J. et al. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G371–G380 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • West, K. L. et al. SC-435, an ileal apical sodium co-dependent bile acid transporter (ASBT) inhibitor lowers plasma cholesterol and reduces atherosclerosis in guinea pigs. Atherosclerosis 171, 201–210 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miethke, A. G. et al. Pharmacological inhibition of apical sodium-dependent bile acid transporter changes bile composition and blocks progression of sclerosing cholangitis in multidrug resistance 2 knockout mice. Hepatology 63, 512–523 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • West, K. L. et al. 1-[4-[4[(4R,5R)-3,3-Dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2]octane methanesulfonate (SC-435), an ileal apical sodium-codependent bile acid transporter inhibitor alters hepatic cholesterol metabolism and lowers plasma low-density lipoprotein-cholesterol concentrations in guinea pigs. J. Pharmacol. Exp. Ther. 303, 293–299 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Al-Dury, S. et al. Pilot study with IBAT inhibitor A4250 for the treatment of cholestatic pruritus in primary biliary cholangitis. Sci. Rep. 8, 6658 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baghdasaryan, A. et al. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis. J. Hepatol. 64, 674–681 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mirum Pharmaceuticals, Inc. MRX-502: Randomized Double-blind Placebo-controlled Phase 3 Study to Evaluate the Efficacy and Safety of Maralixibat in the Treatment of Subjects With Progressive Familial Intrahepatic Cholestasis (PFIC) – MARCH-PFIC (2023).

  • Mirum Pharmaceuticals, Inc. A Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Volixibat in the Treatment of Cholestatic Pruritus in Patients With Primary Biliary Cholangitis (2024).

  • Mirum Pharmaceuticals, Inc. A Randomized Double-Blind Placebo-Controlled Study to Evaluate the Efficacy and Safety of Volixibat in the Treatment of Cholestatic Pruritus in Patients With Primary Sclerosing Cholangitis (2024).

  • Li, L. et al. Regulation of gut microbiota-bile acids axis by probiotics in inflammatory bowel disease. Front. Immunol. 13, 974305 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Devlin, S. Bacterial modification of bile acids alters host physiology. FASEB J. 33, 93.2–93.2 (2019).

    Article 

    Google Scholar 

  • de Bruijn, V. et al. Antibiotic-induced changes in microbiome-related metabolites and bile acids in rat plasma. Metabolites 10, 242 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, L. et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 24, 1919–1929 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Degirolamo, C. et al. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 7, 12–18 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mencarelli, A. et al. VSL#3 resets insulin signaling and protects against NASH and atherosclerosis in a model of genetic dyslipidemia and intestinal inflammation. PLoS ONE 7, e45425 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harrison, S. A. et al. Resmetirom for nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled phase 3 trial. Nat. Med. 29, 2919–2928 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sari, G. et al. A mouse model of humanized liver shows a human-like lipid profile, but does not form atherosclerotic plaque after western type diet. Biochem. Biophys. Res. Commun. 524, 510–515 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, G. L. & Chiang, J. Y. L. Is CYP2C70 the key to new mouse models to understand bile acids in humans? J. Lipid Res. 61, 269–271 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasan, M. N. et al. Glycine-β-muricholic acid improves liver fibrosis and gut barrier function by reducing bile acid pool size and hydrophobicity in male Cyp2c70 knockout mice. Cells 12, 1371 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takahashi, S. et al. Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J. Lipid Res. 57, 2130–2137 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gardès, C. et al. Differential regulation of bile acid and cholesterol metabolism by the farnesoid X receptor in Ldlr−/− mice versus hamsters [S]. J. Lipid Res. 54, 1283–1299 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, X. et al. Mechanistic insights into isoform-dependent and species-specific regulation of bile salt export pump by farnesoid X receptor. J. Lipid Res. 54, 3030–3044 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Honda, A. et al. Increased bile acid concentration in liver tissue with cholesterol gallstone disease. J. Gastroenterol. 30, 61–66 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gómez, C. et al. Development and validation of a highly sensitive LC-MS/MS method for the analysis of bile acids in serum, plasma, and liver tissue samples. Metabolites 10, 282 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • James, S. C. et al. Concentrations of fecal bile acids in participants with functional gut disorders and healthy controls. Metabolites 11, 612 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jäntti, S. E. et al. Quantitative profiling of bile acids in blood, adipose tissue, intestine, and gall bladder samples using ultra high performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 406, 7799–7815 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Straniero, S. et al. Of mice and men: murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism. J. Lipid Res. 61, 480–491 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, W. et al. Structural insights into the heterodimeric complex of the nuclear receptors FXR and RXR. J. Biol. Chem. 293, 12535–12541 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Check out our other content

    Most Popular Articles