Saturday, May 18, 2024

Biochemistry and transcriptomic analyses of Phthorimaea absoluta (Lepidoptera: Gelechiidae) response to insecticides

BiochemistryBiochemistry and transcriptomic analyses of Phthorimaea absoluta (Lepidoptera: Gelechiidae) response to insecticides


  • Silva, G. A. et al. Biological performance and oviposition preference of tomato pinworm Tuta absoluta when offered a range of Solanaceous host plants. Sci. Rep. 11, 1153 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bacci, L. et al. Natural mortality factors of tomato leafminer Tuta absoluta in open-field tomato crops in South America. Pest. Manag. Sci. 75, 736–743 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guedes, R. N. C. & Siqueira, H. A. A. The tomato borer Tuta absoluta: Insecticide resistance and control failure. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 7, 1–7 (2012).

    Google Scholar 

  • Guedes, R. N. C. et al. Insecticide resistance in the tomato pinworm Tuta absoluta: Patterns, spread, mechanisms, management and outlook. J. Pest. Sci. (2004) 92, 1329–1342 (2019).

    Article 

    Google Scholar 

  • Guedes, R. N. C. Insecticide resistance, control failure likelihood and the First Law of Geography. Pest. Manag. Sci. 73, 479–484 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sparks, T. C. & Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 121, 122–128 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, S. J. The Toxicology and Biochemistry of Insecticides. The Toxicology and Biochemistry of Insecticides (Taylor & Francis Group, 2015). https://doi.org/10.1201/b18164.

  • Jansson, R. K. et al. Emamectin benzoate: A novel avermectin derivative for control of lepidopterous pests. In Proceedings of the 3rd International Workshop on Management of Diamondback Moth and Other Crucifer Pests. Vegetable Pest management. 171–177 (1997).

  • Jeanguenat, A. The story of a new insecticidal chemistry class: The diamides. Pest Manag. Sci. 69, 7–14. https://doi.org/10.1002/ps.3406 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haddi, K. et al. Mutation in the ace-1 gene of the tomato leaf miner (Tuta absoluta) associated with organophosphates resistance. J. Appl. Entomol. 141, 612–619 (2017).

    Article 
    CAS 

    Google Scholar 

  • Haddi, K. et al. Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect. Biochem. Mol. Biol. 42, 506–513 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Silva, W. M. et al. Mutation (G275E) of the nicotinic acetylcholine receptor α6 subunit is associated with high levels of resistance to spinosyns in Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Pestic. Biochem. Physiol. 131, 1–8 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Siqueira, H. A. A., Guedes, R. N. C. & Picanco, M. C. Cartap resistance and synergism in populations of Tuta absoluta (Lep., Gelechiidae). J. Appl. Entomol. 124, 233–238 (2000).

    Article 
    CAS 

    Google Scholar 

  • Silva, G. A. et al. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manag. Sci. 67, 913–920 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Siqueira, H. A. A., Guedes, R. N. C., Fragoso, D. B. & Magalhaes, L. C. Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Int. J. Pest Manag. 47, 247–251 (2001).

    Article 

    Google Scholar 

  • Roditakis, E. et al. Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). Insect. Biochem. Mol. Biol. 80, 11–20 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davies, T. G. E., Field, L. M., Usherwood, P. N. R. & Williamson, M. S. DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 59, 151–162 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fournier, D. Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chem. Biol. Interact. 157–158, 257–261 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Ishaaya, I. Biochemical sites of insecticide action and resistance. Biochem. Sites Insect. Action Resist. https://doi.org/10.1007/978-3-642-59549-3 (2001).

    Article 

    Google Scholar 

  • Elghar, G. E. A., Elbermawy, Z. A., Yousef, A. G. & Elhady, H. K. A. Monitoring and characterization of insecticide resistance in the Cotton Leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). J. Asia Pac. Entomol. 8, 397–410 (2005).

    Article 

    Google Scholar 

  • Crow, J. F. Genetics of insect resistance to chemicals. Annu. Rev. Entomol. 2, 227–246 (1957).

    Article 
    CAS 

    Google Scholar 

  • Acquaah, G. Breeding selected crops. In Principles of Plant Genetics and Breeding (eds. Acquaah, G.) 667–678 (Wiley, 2012). https://doi.org/10.1002/9781118313718.

  • Silva, J. E., da Ribeiro, L. M. S., Vinasco, N., Guedes, R. N. C. & Siqueira, H. Á. A. Field-evolved resistance to chlorantraniliprole in the tomato pinworm Tuta absoluta: Inheritance, cross-resistance profile, and metabolism. J. Pest Sci. (2004) 92, 1421–1431 (2019).

    Article 

    Google Scholar 

  • Barati, R., Hejazi, M. J. & Mohammadi, S. A. Insecticide susceptibility in Tuta absoluta (Lepidoptera: Gelechiidae ) and metabolic characterization of resistance to Diazinon. J. Econ. Entomol. 111, 1551–1557 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Silva, W. M. et al. Status of pyrethroid resistance and mechanisms in Brazilian populations of Tuta absoluta. Pestic. Biochem. Physiol. 122, 1–7 (2015).

    Article 
    ADS 

    Google Scholar 

  • Li, X., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Pavlidi, N., Vontas, J. & Van Leeuwen, T. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Curr. Opin. Insect Sci. 27, 97–102 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Meng, J., Chen, X. & Zhang, C. Transcriptome-based identification and characterization of genes responding to imidacloprid in Myzus persicae. Sci. Rep. 9, 1–8 (2019).

    Article 
    ADS 

    Google Scholar 

  • Han, J. B., Li, G. Q., Wan, P. J., Zhu, T. T. & Meng, Q. W. Identification of glutathione S-transferase genes in Leptinotarsa decemlineata and their expression patterns under stress of three insecticides. Pestic. Biochem. Physiol. 133, 26–34 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bautista, M. A. M. et al. Evidence for trade-offs in detoxification and chemosensation gene signatures in Plutella xylostella. Pest. Manag. Sci. 71, 423–432 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Agbessenou, A. et al. Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera: Gelechiidae) through a hidden friendship and cryptic battle. Sci. Rep. 10, 1–13 (2020).

    Article 

    Google Scholar 

  • PCPB. Pest Control Products Registered for Use in Kenya. 1–585 (2018).

  • Jalili, V. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res. 48, W395–W402 (2021).

    Article 

    Google Scholar 

  • Wick, R. & Volkening, J. Porechop: adapter trimmer for Oxford Nanopore reads. Github (2018).

  • Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Article 

    Google Scholar 

  • Carver, T., Harris, S. R., Berriman, M., Parkhill, J. & McQuillan, J. A. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28, 464–469 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Götz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).

    Article 
    CAS 

    Google Scholar 

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haddi, K. et al. Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochem. Mol. Biol. 42, 506–513 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zibaee, I., Mahmood, K., Esmaeily, M., Bandani, A. R. & Kristensen, M. Organophosphate and pyrethroid resistances in the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) from Iran. J. Appl. Entomol. 142, 181–191 (2018).

    Article 
    CAS 

    Google Scholar 

  • Yan, X., Zhang, Y., Xu, K., Wang, Y. & Yang, W. Selection and validation of reference genes for gene expression analysis in Tuta absoluta Meyrick (Lepidoptera: Gelechiidae). (2021) https://doi.org/10.3390/insects12070589.

  • Zheng, C. et al. Reference gene selection for expression analyses by qRT-PCR in Dendroctonus valens. https://doi.org/10.3390/insects11060328.

  • Check out our other content

    Most Popular Articles