Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
Google Scholar
Abbas, M., Lipiński, W. P., Wang, J. & Spruijt, E. Peptide-based coacervates as biomimetic protocells. Chem. Soc. Rev. 50, 3690–3705 (2021).
Google Scholar
Mann, S. Systems of creation: the emergence of life from nonliving matter. Acc. Chem. Res. 45, 2131–2141 (2012).
Google Scholar
Poudyal, R. R., Pir Cakmak, F., Keating, C. D. & Bevilacqua, P. C. Physical principles and extant biology reveal roles for RNA-containing membraneless compartments in origins of life chemistry. Biochemistry 57, 2509–2519 (2018).
Google Scholar
Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
Google Scholar
Laflamme, G. & Mekhail, K. Biomolecular condensates as arbiters of biochemical reactions inside the nucleus. Commun. Biol. 3, 1–8 (2020).
Google Scholar
Zhang, Y., Narlikar, G. J. & Kutateladze, T. G. Enzymatic reactions inside biological condensates. J. Mol. Biol. 433, 166624 (2021).
Google Scholar
O’Flynn, B. G. & Mittag, T. The role of liquid–liquid phase separation in regulating enzyme activity. Curr. Opin. Cell Biol. 69, 70–79 (2021).
Google Scholar
Dai, Y. et al. Interface of biomolecular condensates modulates redox reactions. Chem 9, 1594–1609 (2023).
Google Scholar
Saito, Y. & Kimura, W. Roles of phase separation for cellular redox maintenance. Front. Genet. 12, 691946 (2021).
Sridharan, S. et al. Systematic discovery of biomolecular condensate-specific protein phosphorylation. Nat. Chem. Biol. 18, 1104–1114 (2022).
Google Scholar
Aumiller, W. M. & Keating, C. D. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 8, 129–137 (2016).
Google Scholar
Paloni, M., Bailly, R., Ciandrini, L. & Barducci, A. Unraveling molecular interactions in liquid–liquid phase separation of disordered proteins by atomistic simulations. J. Phys. Chem. B 124, 9009–9016 (2020).
Google Scholar
Sancho, D. D. Phase separation in amino acid mixtures is governed by composition. Biophys. J. 121, 4119–4127 (2022).
Google Scholar
Ye, S. et al. Micropolarity governs the structural organization of biomolecular condensates. Nat. Chem. Biol. 20, 443–451 (2024).
Google Scholar
Galvanetto, N. et al. Extreme dynamics in a biomolecular condensate. Nature 619, 876–883 (2023).
Google Scholar
Joseph, J. A. et al. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nat. Comput. Sci. 1, 732–743 (2021).
Google Scholar
Tesei, G., Schulze, T. K., Crehuet, R. & Lindorff-Larsen, K. Accurate model of liquid–liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Proc. Natl Acad. Sci. USA 118, e2111696118 (2021).
Google Scholar
Regy, R. M., Thompson, J., Kim, Y. C. & Mittal, J. Improved coarse‐grained model for studying sequence dependent phase separation of disordered proteins. Protein Sci. 30, 1371–1379 (2021).
Google Scholar
Garaizar, A. et al. Aging can transform single-component protein condensates into multiphase architectures. Proc. Natl Acad. Sci. 119, e2119800119 (2022).
Google Scholar
Sanchez-Burgos, I., Espinosa, J. R., Joseph, J. A. & Collepardo-Guevara, R. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. PLOS Comput. Biol. 18, e1009810 (2022).
Google Scholar
Blazquez, S. et al. Location and concentration of aromatic-rich segments dictates the percolating inter-molecular network and viscoelastic properties of ageing condensate. Adv. Sci. 10, 2207742 (2023).
Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007).
Google Scholar
Souza, P. C. T. et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods 18, 382–388 (2021).
Google Scholar
Alessandri, R., Grünewald, F. & Marrink, S. J. The Martini model in materials science. Adv. Mater. 33, 2008635 (2021).
Google Scholar
Marrink, S. J. et al. Two decades of Martini: better beads, broader scope. WIREs Comput. Mol. Sci. 13, e1620 (2023).
Google Scholar
Tsanai, M., Frederix, P. W. J. M., Schroer, C. F. E., Souza, P. C. T. & Marrink, S. J. Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the Martini model. Chem. Sci. 12, 8521–8530 (2021).
Google Scholar
Benayad, Z., Von Bülow, S., Stelzl, L. S. & Hummer, G. Simulation of FUS protein condensates with an adapted coarse-grained model. J. Chem. Theory Comput. 17, 525–537 (2021).
Google Scholar
Zerze, G. H. Optimizing the Martini 3 force field reveals the effects of the intricate balance between protein–water interaction strength and salt concentration on biomolecular condensate formation. J. Chem. Theory Comput. 20, 1646–1655 (2023).
Ingólfsson, H. I. et al. Multiscale simulations reveal TDP-43 molecular level interactions driving condensation. Biophys. J. 122, 4370–4381 (2023).
Liu, Y., Wang, X., Wan, Z., Ngai, T. & Tse, Y.-L. S. Capturing coacervate formation and protein partition by molecular dynamics simulation. Chem. Sci. 14, 1168–1175 (2023).
Google Scholar
Sami, S. & Marrink, S. J. Reactive Martini: chemical reactions in coarse-grained molecular dynamics simulations. J. Chem. Theory Comput. 19, 4040–4046 (2023).
Google Scholar
Grünewald, F. et al. Titratable Martini model for constant pH simulations. J. Chem. Phys. 153, 024118 (2020).
Google Scholar
Sami, S., Grünewald, F., Souza, P. C. T., & Marrink, S. J. A guide to titratable Martini simulations. https://doi.org/10.1063/9780735425279_004 (2023).
Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).
Google Scholar
Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 10, 111–119 (2015).
Google Scholar
Frederix, P. W. J. M. et al. Structural and spectroscopic properties of assemblies of self-replicating peptide macrocycles. ACS Nano 11, 7858–7868 (2017).
Google Scholar
Abbas, M., Lipiński, W. P., Nakashima, K. K., Huck, W. T. S. & Spruijt, E. A short peptide synthon for liquid–liquid phase separation. Nat. Chem. 13, 1046–1054 (2021).
Google Scholar
Newville, M. et al. Lmfit/Lmfit-Py: 1.3.0. https://doi.org/10.5281/zenodo.7819242 (2024).
Thomasen, F. E., Pesce, F., Roesgaard, M. A., Tesei, G. & Lindorff-Larsen, K. Improving Martini 3 for disordered and multidomain proteins. J. Chem. Theory Comput. 18, 2033–2041 (2022).
Google Scholar
Colomb-Delsuc, M., Mattia, E., Sadownik, J. W. & Otto, S. Exponential self-replication enabled through a fibre elongation/breakage mechanism. Nat. Commun. 6, 7427 (2015).
Google Scholar
Komáromy, D. et al. Self-assembly can direct dynamic covalent bond formation toward diversity or specificity. J. Am. Chem. Soc. 139, 6234–6241 (2017).
Google Scholar
Liu, K. et al. Light-driven eco-evolutionary dynamics in a synthetic replicator system. Nat. Chem. 16, 79–88 (2024).
Jursic, B. S. Computation of bond dissociation energy for sulfides and disulfides with ab initio and density functional theory methods. Int. J. Quantum Chem. 62, 291–296 (1997).
Google Scholar
Baruch Leshem, A. et al. Biomolecular condensates formed by designer minimalistic peptides. Nat. Commun. 14, 421 (2023).
Google Scholar
Smokers, I., Visser, B., Lipiński, W., Nakashima, K., & Spruijt, E. Phase-separated droplets can direct the kinetics of chemical reactions including polymerization, self-replication and oscillating networks. ChemRxiv. https://doi.org/10.26434/chemrxiv-2024-xzl0t (2024).
Grünewald, F. et al. Polyply; a Python suite for facilitating simulations of macromolecules and nanomaterials. Nat. Commun. 13, 68 (2022).
Google Scholar
Souza, P. C. T. et al. GōMartini 3: from large conformational changes in proteins to environmental bias corrections. bioRxiv. https://doi.org/10.1101/2024.04.15.589479 (2024).
Sami, S., Menger, M. F. S. J., Faraji, S., Broer, R. & Havenith, R. W. A. Q-Force: quantum mechanically augmented molecular force fields. J. Chem. Theory Comput. 17, 4946–4960 (2021).
Google Scholar
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
Google Scholar
de Jong, D. H., Baoukina, S., Ingólfsson, H. I. & Marrink, S. J. Martini straight: boosting performance using a shorter cutoff and GPUs. Comput. Phys. Commun. 199, 1–7 (2016).
Google Scholar
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).
Google Scholar
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).
Google Scholar
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).
Google Scholar
Lindahl, V., Lidmar, J. & Hess, B. Accelerated weight histogram method for exploring free energy landscapes. J. Chem. Phys. 141, 044110 (2014).
Google Scholar