Saturday, May 18, 2024

COPII cage assembly factor Sec13 integrates information flow regulating endomembrane function in response to human variation

BiochemistryCOPII cage assembly factor Sec13 integrates information flow regulating endomembrane function in response to human variation


  • Sun, S. et al. Capturing the conversion of the pathogenic alpha-1-antitrypsin fold by ATF6 enhanced proteostasis. Cell Chem. Biol. 30, 22–42 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loguercio, S. et al. Understanding the host-pathogen evolutionary balance through Gaussian process modeling of SARS-CoV-2. Patterns N. Y. 4, 100800 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C., Angles, F. & Balch, W. E. Triangulating variation in the population to define mechanisms for precision management of genetic disease. Structure 30, 1190–1207 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anglès, F., Wang, C. & Balch, W. E. Spatial covariance analysis reveals the residue-by-residue thermodynamic contribution of variation to the CFTR fold. Commun. Biol. 5, 1–16 (2022).

    Google Scholar 

  • Wang, C. et al. Individualized management of genetic diversity in Niemann-Pick C1 through modulation of the Hsp70 chaperone system. Hum. Mol. Genet. 29, 1–19 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, C. et al. Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process. Nat. Commun. 10, 5052 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C. & Balch, W. E. Bridging Genomics to Phenomics at Atomic Resolution through Variation Spatial Profiling. Cell Rep. 24, 2013–2028 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stagg, S. M. et al. Structural basis for cargo regulation of COPII coat assembly. Cell 134, 474–484 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gürkan, C., Stagg, S. M., LaPointe, P. & Balch, W. E. The COPII cage: Unifying principles of vesicle coat assembly. Nat. Rev. Mol. Cell Biol. 7, 727–738 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Aridor, M. A tango for coats and membranes: New insights into ER-to-Golgi traffic. Cell Rep. 38, 110258 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chatterjee, S., Choi, A. J. & Frankel, G. A systematic review of Sec24 cargo interactome. Traffic 22, 412–424 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, C. L. & Kim, J. Consequences of mutations in the genes of the ER export machinery COPII in vertebrates. Cell Stress Chaperones 25, 199–209 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z., Huang, W. & Wang, W. Multifaceted roles of COPII subunits in autophagy. Biochim. Biophys. Acta Mol. Cell Res. 1867, 118627 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pantazopoulou, A. & Glick, B. S. A kinetic view of membrane traffic pathways can transcend the classical view of golgi compartments. Front. Cell Dev. Biol. 7, 153 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCaughey, J. & Stephens, D. J. COPII-dependent ER export in animal cells: Adaptation and control for diverse cargo. Histochem. Cell Biol. 150, 119–131 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van der Verren, S. E. & Zanetti, G. The small GTPase Sar1, control centre of COPII trafficking. FEBS Lett. 597, 865–882 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Tang, V. T. & Ginsburg, D. Cargo selection in endoplasmic reticulum-to-Golgi transport and relevant diseases. J. Clin. Invest. 133, 1 (2023).

    Article 

    Google Scholar 

  • Shen, Y., Gu, H. M., Qin, S. & Zhang, D. W. Surf4, cargo trafficking, lipid metabolism, and therapeutic implications. J. Mol. Cell Biol. 2023, 14 (2023).

    Google Scholar 

  • Raote, I., Saxena, S. & Malhotra, V. Sorting and export of proteins at the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 15, 823 (2023).

    Article 

    Google Scholar 

  • Ogen-Shtern, N. et al. COP I and II dependent trafficking controls ER-associated degradation in mammalian cells. iScience 26, 106232 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parashar, S. & Ferro-Novick, S. Architecture of the endoplasmic reticulum plays a role in proteostasis. Autophagy 18, 937–938 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malis, Y., Hirschberg, K. & Kaether, C. Hanging the coat on a collar: Same function but different localization and mechanism for COPII. Bioessays 44, e2200064 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Li, X., Li, X., Fan, B., Zhu, C. & Chen, Z. Specialized endoplasmic reticulum-derived vesicles in plants: Functional diversity, evolution, and biotechnological exploitation. J. Integr. Plant Biol. 64, 821–835 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. et al. WFS1 functions in ER export of vesicular cargo proteins in pancreatic beta-cells. Nat. Commun. 12, 6996 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shomron, O. et al. COPII collar defines the boundary between ER and ER exit site and does not coat cargo containers. J. Cell Biol. 220, 87 (2021).

    Article 

    Google Scholar 

  • Raote, I. & Malhotra, V. Tunnels for protein export from the endoplasmic reticulum. Annu. Rev. Biochem. 90, 605–630 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Joiner, A. M. N. & Fromme, J. C. Structural basis for the initiation of COPII vesicle biogenesis. Structure 29, 859–872 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duan, J. & Lambright, D. G. Propelling COPII vesicle biogenesis at the endoplasmic reticulum. Structure 29, 779–781 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stancheva, V. G. et al. Combinatorial multivalent interactions drive cooperative assembly of the COPII coat. J. Cell Biol. 219, 85 (2020).

    Article 

    Google Scholar 

  • Gomez-Navarro, N. et al. Cargo crowding contributes to sorting stringency in COPII vesicles. J. Cell Biol. 219, 89 (2020).

    Article 

    Google Scholar 

  • Cui, Y., Parashar, S. & Ferro-Novick, S. A new role for a COPII cargo adaptor in autophagy. Autophagy 16, 376–378 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barlowe, C. Twenty-five years after coat protein complex II. Mol. Biol. Cell 31, 3–6 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stagg, S. M. et al. Structure of the Sec13/31 COPII coat cage. Nature 439, 234–238 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses a di-acidic exit code. J. Cell Biol. 167, 65–74 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nie, C., Wang, H., Wang, R., Ginsburg, D. & Chen, X. W. Dimeric sorting code for concentrative cargo selection by the COPII coat. Proc. Natl. Acad. Sci. U. S. A. 115, E3155–E3162 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khoriaty, R. et al. Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc. Natl. Acad. Sci. U. S. A. 115, E7748–E7757 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paraan, M., Bhattacharya, N., Uversky, V. N. & Stagg, S. M. Flexibility of the Sec13/31 cage is influenced by the Sec31 C-terminal disordered domain. J. Struct. Biol. 204, 250–260 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parashar, S. et al. Endoplasmic reticulum tubules limit the size of misfolded protein condensates. Elife 10, 123 (2021).

    Article 

    Google Scholar 

  • Cui, Y. et al. A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation. Science 365, 53–60 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Farhan, H., Kundu, M. & Ferro-Novick, S. The link between autophagy and secretion: A story of multitasking proteins. Mol. Biol. Cell 28, 1161–1164 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nishimura, N. & Balch, W. E. A di-acidic signal required for selective export from the endoplasmic reticulum. Science 277, 556–558 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saha, K. et al. Pharmacological chaperone-rescued cystic fibrosis CFTR-F508del mutant overcomes PRAF2-gated access to endoplasmic reticulum exit sites. Cell Mol. Life Sci. 79, 530 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lagunas-Gomez, D., Yanez-Dominguez, C., Zavala-Padilla, G., Barlowe, C. & Pantoja, O. The C-terminus of the cargo receptor Erv14 affects COPII vesicle formation and cargo delivery. J. Cell Sci. 136, 796 (2023).

    Article 

    Google Scholar 

  • Tempio, T. et al. A virtuous cycle operated by ERp44 and ERGIC-53 guarantees proteostasis in the early secretory compartment. iScience 24, 102244 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sargeant, J. et al. ALG-2 and peflin regulate COPII targeting and secretion in response to calcium signaling. J. Biol. Chem. 297, 101393 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ordonez, A., Harding, H. P., Marciniak, S. J. & Ron, D. Cargo receptor-assisted endoplasmic reticulum export of pathogenic alpha1-antitrypsin polymers. Cell Rep. 35, 109144 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nalbach, K. et al. Spatial proteomics reveals secretory pathway disturbances caused by neuropathy-associated TECPR2. Nat. Commun. 14, 870 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aridor, M. et al. The Sar1 GTPase coordinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. J. Cell Biol. 152, 213–229 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aridor, M., Bannykh, S. I., Rowe, T. & Balch, W. E. Cargo can modulate COPII vesicle formation from the endoplasmic reticulum. J. Biol. Chem. 274, 4389–4399 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aridor, M., Weissman, J., Bannykh, S., Nuoffer, C. & Balch, W. E. Cargo selection by the COPII budding machinery during export from the ER. J. Cell Biol. 141, 61–70 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aridor, M., Bannykh, S. I., Rowe, T. & Balch, W. E. Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J. Cell Biol. 131, 875–893 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hutchings, J., Stancheva, V., Miller, E. A. & Zanetti, G. Subtomogram averaging of COPII assemblies reveals how coat organization dictates membrane shape. Nat. Commun. 9, 4154 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mehrani, A. & Stagg, S. M. Probing intracellular vesicle trafficking and membrane remodelling by cryo-EM. J. Struct. Biol. 214, 107836 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhattacharya, N. J. O. D. & Stagg, S. M. The structure of the Sec13/31 COPII cage bound to Sec23. J. Mol. Biol. 420, 324–334 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Donnell, J., Maddox, K. & Stagg, S. The structure of a COPII tubule. J. Struct. Biol. 173, 358–364 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Russell, C. & Stagg, S. M. New insights into the structural mechanisms of the COPII coat. Traffic 11, 303–310 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rowe, T. et al. COPII vesicles derived from mammalian endoplasmic reticulum microsomes recruit COPI. J. Cell Biol. 135, 895–911 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, F. et al. COPII mitigates ER stress by promoting formation of ER whorls. Cell Res. 31, 141–156 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Phuyal, S. & Farhan, H. Want to leave the ER? We offer vesicles, tubules, and tunnels. J. Cell Biol. 220, 6 (2021).

    Article 

    Google Scholar 

  • Newstead, S. & Barr, F. Molecular basis for KDEL-mediated retrieval of escaped ER-resident proteins – SWEET talking the COPs. J. Cell Sci. 133, 19 (2020).

    Article 

    Google Scholar 

  • Peotter, J., Kasberg, W., Pustova, I. & Audhya, A. COPII-mediated trafficking at the ER/ERGIC interface. Traffic 20, 491–503 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bethune, J. & Wieland, F. T. Assembly of COPI and COPII vesicular coat proteins on membranes. Annu. Rev. Biophys. 47, 63–83 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Niu, X. et al. The nuclear pore complex function of Sec13 protein is required for cell survival during retinal development. J. Biol. Chem. 289, 11971–11985 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, D. H. & Hoelz, A. The structure of the nuclear pore complex (an update). Annu. Rev. Biochem. 88, 725–783 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bar-Peled, L. et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parmigiani, A. et al. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep. 9, 1281–1291 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valenstein, M. L. et al. Structure of the nutrient-sensing hub GATOR2. Nature 607, 610–616 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X., Koulov, A. V., Kellner, W. A., Riordan, J. R. & Balch, W. E. Chemical and biological folding contribute to temperature-sensitive DeltaF508 CFTR trafficking. Traffic 9, 1878–1893 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127, 803–815 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nishimura, N. et al. A di-acidic (DXE) code directs concentration of cargo during export from the endoplasmic reticulum. J. Biol. Chem. 274, 15937–15946 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fiedorczuk, K. & Chen, J. Mechanism of CFTR correction by type I folding correctors. Cell 185, 158–168 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fiedorczuk, K. & Chen, J. Molecular structures reveal synergistic rescue of Delta508 CFTR by Trikafta modulators. Science 378, 284–290 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Im, J. et al. ABC-transporter CFTR folds with high fidelity through a modular, stepwise pathway. Cell Mol. Life Sci. 80, 33 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hwang, T. C., Braakman, I., van der Sluijs, P. & Callebaut, I. Structure basis of CFTR folding, function and pharmacology. J. Cyst. Fibros 22(Suppl 1), S5–S11 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kleizen, B. et al. Co-translational folding of the first transmembrane domain of ABC-transporter CFTR is supported by assembly with the first cytosolic domain. J. Mol. Biol. 433, 166955 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baaklini, I., Goncalves, C. C., Lukacs, G. L. & Young, J. C. Selective binding of HSC70 and its co-chaperones to structural hotspots on CFTR. Sci. Rep. 10, 4176 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bagdany, M. et al. Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell. Nat. Commun. 8, 398 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amaral, M. D. & Balch, W. E. Hallmarks of therapeutic management of the cystic fibrosis functional landscape. J. Cystic Fibrosis 14, 687–699 (2015).

    Article 

    Google Scholar 

  • Shishido, H., Yoon, J. S., Yang, Z. & Skach, W. R. CFTR trafficking mutations disrupt cotranslational protein folding by targeting biosynthetic intermediates. Nat. Commun. 11, 4258 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santos, J. D. et al. Folding status is determinant over traffic-competence in defining CFTR interactors in the endoplasmic reticulum. Cells 8, 353 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwarzenberg, S. J. et al. Elexacaftor/tezacaftor/ivacaftor and gastrointestinal outcomes in cystic fibrosis: Report of promise-GI. J. Cyst. Fibros 22, 282–289 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hutt, D. M. et al. Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy. J. Biol. Chem. 293, 13682–13695 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hillenaar, T., Beekman, J., van der Sluijs, P. & Braakman, I. Redefining Hypo- and Hyper-Responding Phenotypes of CFTR Mutants for Understanding and Therapy. Int. J. Mol. Sci. 23, 145 (2022).

    Article 

    Google Scholar 

  • Sabusap, C. M. et al. The CFTR P67L variant reveals a key role for N-terminal lasso helices in channel folding, maturation, and pharmacologic rescue. J. Biol. Chem. 296, 100598 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Willigen, M. et al. Folding-function relationship of the most common cystic fibrosis-causing CFTR conductance mutants. Life Sci. Alliance 2019, 2 (2019).

    Google Scholar 

  • Hoelen, H. et al. The primary folding defect and rescue of ΔF508 CFTR emerge during translation of the mutant domain. PLoS One 5, e15458 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pankow, S. et al. ∆ F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature 528, 510–516 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hutt, D. M. et al. FK506 binding protein 8 peptidylprolyl isomerase activity manages a late stage of cystic fibrosis transmembrane conductance regulator (CFTR) folding and stability. J. Biol. Chem. 287, 21914–21925 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coppinger, J. A. et al. A chaperone trap contributes to the onset of cystic fibrosis. PLoS One 7, e37682 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koulov, A. V. et al. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol. Biol. Cell 21, 871–884 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bannykh, S. I., Rowe, T. & Balch, W. E. The organization of endoplasmic reticulum export complexes. J. Cell Biol. 135, 19–35 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bi, X., Mancias, J. D. & Goldberg, J. Insights into COPII coat nucleation from the structure of Sec23.Sar1 complexed with the active fragment of Sec31. Dev. Cell 13, 635–645 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fath, S., Mancias, J. D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell 129, 1325–1336 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brohawn, S. G., Leksa, N. C., Spear, E. D., Rajashankar, K. R. & Schwartz, T. U. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science 322, 1369–1373 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Enninga, J., Levay, A. & Fontoura, B. M. Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex. Mol. Cell. Biol. 23, 7271–7284 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hsia, K.-C., Stavropoulos, P., Blobel, G. & Hoelz, A. Architecture of a coat for the nuclear pore membrane. Cell 131, 1313–1326 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, X. et al. Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex. Science 376, 8280 (2022).

    Article 

    Google Scholar 

  • Capelson, M. et al. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140, 372–383 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gurkan, C. & Balch, W. E. Recombinant production in baculovirus-infected insect cells and purification of the mammalian Sec13/Sec31 complex. Methods Enzymol. 404, 58–66 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jain, B. P. & Pandey, S. WD40 repeat proteins: Signalling scaffold with diverse functions. Protein J. 37, 391–406 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, C. & Min, J. Structure and function of WD40 domain proteins. Protein Cell 2, 202–214 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stirnimann, C. U., Petsalaki, E., Russell, R. B. & Müller, C. W. WD40 proteins propel cellular networks. Trends Biochem. Sci. 35, 565–574 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Szklarczyk, D. et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pavitt, G. D. Regulation of translation initiation factor eIF2B at the hub of the integrated stress response. Wiley Interdiscipl. Rev. RNA 9, e1491 (2018).

    Article 

    Google Scholar 

  • Gamper, A. M., Kim, J. & Roeder, R. G. The STAGA subunit ADA2b is an important regulator of human GCN5 catalysis. Mol. Cell Biol. 29, 266–280 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Y. et al. A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol. Cell 29, 92–101 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gamper, A. M. & Roeder, R. G. Multivalent binding of p53 to the STAGA complex mediates coactivator recruitment after UV damage. Mol. Cell Biol. 28, 2517–2527 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Subramanian, K., Rauniyar, N., Lavalleé-Adam, M., Yates, J. R. III. & Balch, W. E. Quantitative analysis of the proteome response to the histone deacetylase inhibitor (HDACi) vorinostat in Niemann-Pick Type C1 disease. Mol. Cell. Proteom. 16, 1938–1957 (2017).

    Article 
    CAS 

    Google Scholar 

  • Li, S., Zhang, M. & Ge, L. A new type of membrane contact in the ER-Golgi system regulates autophagosome biogenesis. Autophagy 17, 4499–4501 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahsan, A. et al. Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm. Sin. B 11, 1708–1720 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamamoto, Y. H. & Noda, T. Autophagosome formation in relation to the endoplasmic reticulum. J. Biomed. Sci. 27, 97 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shima, T., Kirisako, H. & Nakatogawa, H. COPII vesicles contribute to autophagosomal membranes. J. Cell Biol. 218, 1503–1510 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zahoor, M. & Farhan, H. Crosstalk of autophagy and the secretory pathway and its role in diseases. Int. Rev. Cell Mol. Biol. 337, 153–184 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Salama, N. R., Chuang, J. S. & Schekman, R. W. Sec31 encodes an essential component of the COPII coat required for transport vesicle budding from the endoplasmic reticulum. Mol. Biol. Cell 8, 205–217 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pryer, N. K., Salama, N. R., Schekman, R. & Kaiser, C. A. Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro. J. Cell Biol. 120, 865–875 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, J. P., Kim, Y., Cao, Q. & Hirota, J. A. Interactions between ABCC4/MRP4 and ABCC7/CFTR in human airway epithelial cells in lung health and disease. Int. J. Biochem. Cell Biol. 133, 105936 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Russel, F. G., Koenderink, J. B. & Masereeuw, R. Multidrug resistance protein 4 (MRP4/ABCC4): A versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol. Sci. 29, 200–207 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Banting, G. & Ponnambalam, S. TGN38 and its orthologues: Roles in post-TGN vesicle formation and maintenance of TGN morphology. Biochim. Biophys. Acta BBA Mol. Cell Res. 1355, 209–217 (1997).

    Article 
    CAS 

    Google Scholar 

  • Pfeffer, S. R. Multiple routes of protein transport from endosomes to the trans Golgi network. FEBS Lett. 583, 3811–3816 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jing, J., Wang, B. & Liu, P. The functional role of SEC23 in vesicle transportation, autophagy and cancer. Int. J. Biol. Sci. 15, 2419–2426 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mauthe, M. et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14, 1435–1455 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, L. et al. DNAJB12 and Hsp70 triage arrested intermediates of N1303K-CFTR for endoplasmic reticulum-associated autophagy. Mol. Biol. Cell 32, 538–553 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C., Xia, B., Wang, S. & Xu, J. Folded or degraded in endoplasmic reticulum. Adv. Exp. Med. Biol. 1248, 265–294 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poothong, J., Jang, I. & Kaufman, R. J. Defects in protein folding and/or quality control cause protein aggregation in the endoplasmic reticulum. Prog. Mol. Subcell Biol. 59, 115–143 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Estabrooks, S. & Brodsky, J. L. Regulation of CFTR biogenesis by the proteostatic network and pharmacological modulators. Int. J. Mol. Sci. 21, 452 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Estabrooks, S. K. & Brodsky, J. L. Ubiquitination of disease-causing CFTR variants in a microsome-based assay. Anal. Biochem. 604, 113829 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goeckeler-Fried, J. L. et al. Improved correction of F508del-CFTR biogenesis with a folding facilitator and an inhibitor of protein ubiquitination. Bioorg. Med. Chem. Lett. 48, 128243 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou, X. et al. Dissection of the role of VIMP in endoplasmic reticulum-associated degradation of CFTRDeltaF508. Sci. Rep. 8, 4764 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Y. et al. Targeting DNAJB9, a novel ER luminal co-chaperone, to rescue DeltaF508-CFTR. Sci. Rep. 9, 9808 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzuki, K., Akioka, M., Kondo-Kakuta, C., Yamamoto, H. & Ohsumi, Y. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. 126, 2534–2544 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Saegusa, K. et al. Cargo receptor Surf4 regulates endoplasmic reticulum export of proinsulin in pancreatic beta-cells. Commun. Biol. 5, 458 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ginsberg, H. N. ApoB SURFs a Ride from the ER to the Golgi. Cell Metab. 33, 231–233 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saegusa, K., Sato, M., Morooka, N., Hara, T. & Sato, K. SFT-4/Surf4 control ER export of soluble cargo proteins and participate in ER exit site organization. J. Cell Biol. 217, 2073–2085 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richard, C. & Verdier, F. Transferrin receptors in erythropoiesis. Int. J. Mol. Sci. 21, 9713 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gammella, E., Buratti, P., Cairo, G. & Recalcati, S. The transferrin receptor: The cellular iron gate. Metallomics 9, 1367–1375 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qu, B.-H., Strickland, E. H. & Thomas, P. J. Localization and suppression of a kinetic defect in cystic fibrosis transmembrane conductance regulator folding. J. Biol. Chem. 272, 15739–15744 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sosnay, P. R. et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat. Genet. 45, 1160–1167 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joynt, A. T., Cutting, G. R. & Sharma, N. Genetics of cystic fibrosis: Clinical implications. Clin. Chest Med. 43, 591–602 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Cutting, G. R. Cystic fibrosis genetics: From molecular understanding to clinical application. Nat. Rev. Genet. 16, 45–56 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahner, A., Nakatsukasa, K., Zhang, H., Frizzell, R. A. & Brodsky, J. L. Small heat-shock proteins select ΔF508-CFTR for endoplasmic reticulum-associated degradation. Mol. Biol. Cell 18, 806–814 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brodsky, J. L. & Wojcikiewicz, R. J. Substrate-specific mediators of ER associated degradation (ERAD). Curr. Opin. Cell Biol. 21, 516–521 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gong, X. et al. Non-native conformers of cystic fibrosis transmembrane conductance regulator NBD1 are recognized by Hsp27 and conjugated to SUMO-2 for degradation. J. Biol. Chem. 291, 2004–2017 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Turnbull, E. L., Rosser, M. F. & Cyr, D. M. The role of the UPS in cystic fibrosis. BMC Biochem. 8, 1–10 (2007).

    Article 

    Google Scholar 

  • Vembar, S. S. & Brodsky, J. L. One step at a time: Endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 9, 944–957 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Subramanian, K. et al. Correction of Niemann-Pick type C1 trafficking and activity with the histone deacetylase inhibitor valproic acid. J. Biol. Chem. 295, 8017–8035 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pankow, S., Bamberger, C. & Yates, J. R. A posttranslational modification code for CFTR maturation is altered in cystic fibrosis. Sci. Signal. 12, 45 (2019).

    Article 

    Google Scholar 

  • Badr, A. et al. CFTR modulators restore acidification of autophago-lysosomes and bacterial clearance in cystic fibrosis macrophages. Front. Cell Infect. Microbiol. 12, 819554 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kapouni, N., Moustaki, M., Douros, K. & Loukou, I. Efficacy and safety of elexacaftor-tezacaftor-ivacaftor in the treatment of cystic fibrosis: A systematic review. Children Basel 10, 745 (2023).

    Google Scholar 

  • Bacalhau, M. et al. Elexacaftor-tezacaftor-ivacaftor: A life-changing triple combination of CFTR modulator drugs for cystic fibrosis. Pharmaceut. Basel 16, 78 (2023).

    Google Scholar 

  • Ensinck, M. M. & Carlon, M. S. One size does not fit all: The past, present and future of cystic fibrosis causal therapies. Cells 11, 14 (2022).

    Article 

    Google Scholar 

  • Dawood, S. N. et al. Newly discovered cutting-edge triple combination cystic fibrosis therapy: A systematic review. Cureus 14, e29359 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaher, A., ElSaygh, J., Elsori, D., ElSaygh, H. & Sanni, A. A review of Trikafta: Triple cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy. Cureus 13, e16144 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Galietta, L. V., Jayaraman, S. & Verkman, A. Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am. J. Physiol.-Cell Physiol. 281, C1734–C1742 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singh, J. K. et al. Management of Hsp90-dependent protein folding by small molecules targeting the Aha1 Co-Chaperone. Cell Chem. Biol. 27, 292–305 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bannykh, S. I. & Balch, W. E. Membrane dynamics at the endoplasmic reticulum-Golgi interface. J. Cell Biol. 138, 1–4 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peter, F., Plutner, H., Zhu, H., Kreis, T. E. & Balch, W. E. Beta-COP is essential for transport of protein from the endoplasmic reticulum to the Golgi in vitro. J. Cell Biol. 122, 1155–1167 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, Y. et al. Sec16A, a key protein in COPII vesicle formation, regulates the stability and localization of the novel ubiquitin ligase RNF183. PLoS One 13, e0190407 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, Q. et al. PAQR3 regulates endoplasmic reticulum-to-golgi trafficking of COPII vesicle via interaction with Sec13/Sec31 coat proteins. iScience 9, 382–398 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dascher, C. & Balch, W. E. Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem. 269, 1437–1448 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ward, C. L. & Kopito, R. R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J. Biol. Chem. 269, 25710–25718 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roth, D. M. et al. Modulation of the maladaptive stress response to manage diseases of protein folding. PLoS Biol. 12, e1001998 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Veit, G. et al. A precision medicine approach to optimize modulator therapy for rare CFTR folding mutants. J. Pers. Med. 11, 673 (2021).

    Article 

    Google Scholar 

  • Kleizen, B. et al. Transmembrane Helices 7 and 8 confer aggregation sensitivity to the cystic fibrosis transmembrane conductance regulator. Int. J. Mol. Sci. 24, 15741 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCaul, N. & Braakman, I. Hold the fold: How delayed folding aids protein secretion. EMBO J. 41, e112787 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Antonny, B., Gounon, P., Schekman, R. & Orci, L. Self-assembly of minimal COPII cages. EMBO Rep. 4, 419–424 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gee, H. Y., Noh, S. H., Tang, B. L., Kim, K. H. & Lee, M. G. Rescue of DeltaF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell 146, 746–760 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cruz-Garcia, D., Malhotra, V. & Curwin, A. J. Unconventional protein secretion triggered by nutrient starvation. Semin. Cell Dev. Biol. 83, 22–28 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anglès, F., Hutt, D. M. & Balch, W. E. HDAC inhibitors rescue multiple disease-causing CFTR variants. Hum. Mol. Genet. 28, 1982–2000 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hutt, D. M., Loguercio, S., Campos, A. R. & Balch, W. E. A proteomic variant approach (ProVarA) for personalized medicine of inherited and somatic disease. J. Mol. Biol. 430, 2951–2973 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, W., Smith, J. W. & Huang, C.-M. Mass spectrometry-based label-free quantitative proteomics. J. Biomed. Biotechnol. 2010, 6 (2009).

    Google Scholar 

  • Oliver, K. E. et al. Slowing ribosome velocity restores folding and function of mutant CFTR. J. Clin. Invest. 129, 5236–5253 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Check out our other content

    Most Popular Articles