Wednesday, June 12, 2024

Dynamic molecular portraits of ion-conducting pores characterize functional states of TRPV channels

BiochemistryDynamic molecular portraits of ion-conducting pores characterize functional states of TRPV channels


  • Lau, C. et al. Never at rest: insights into the conformational dynamics of ion channels from cryo-electron microscopy. J. Physiol. 596, 1107 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nilius B., Flockerzi V. Handbook of Experimental Pharmacology, 223 (Springer, 2014)

  • Morales-Lazaro, S. L., Lemus, L. & Rosenbaum, T. Regulation of thermoTRPs by lipids. Temperature 4, 24 (2017).

    Article 

    Google Scholar 

  • Pumroy, R. A., Fluck, E. C., Ahmed, T. & Moiseenkova-Bell, V. Y. Structural insights into the gating mechanisms of TRPV channels. Cell Calcium 87, 102168 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lansky, S. et al. A pentameric TRPV3 channel with a dilated pore. Nature 621, 206 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rao, S. et al. Water and hydrophobic gates in ion channels and nanopores. Faraday Discuss. 209, 231 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huffer, K. E. et al. Global alignment and assessment of TRP channel transmembrane domain structures to explore functional mechanisms. eLife 9, 58660 (2020).

    Article 

    Google Scholar 

  • Klesse, G., Rao, S., Sansom, M. S. P. & Tucker, S. J. CHAP: a versatile tool for the structural and functional annotation of ion channel pores. J. Mol. Biol. 431, 3353 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zubcevic, L. & Lee, S.-Y. The role of π-helices in TRP channel gating. Curr. Opin. Struct. Biol. 58, 314 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGoldrick, L. et al. Opening of the human epithelial calcium channel TRPV6. Nature 553, 233 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lubova, K. I. et al. Probing temperature and capsaicin-induced activation of TRPV1 channel via computationally guided point mutations in its pore and TRP domains. Int. J. Biol. Macromol. 158, 1175 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zheng, W. et al. Identification and characterization of hydrophobic gate residues in TRP channels. FASEB J. 32, 639–653 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, K., Julius, D. & Cheng, Y. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell 184, 1–13 (2021).

    Article 

    Google Scholar 

  • Nadezhdin, K. D. et al. Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel. Nat. Struct. Mol. Biol. 28, 564 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kasimova, M. A. et al. A hypothetical molecular mechanism for TRPV1 activation that invokes rotation of an S6 asparagine. J. Gen. Physiol. 150, 1554 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, E. Structural mechanisms of transient receptor potential ion channels. J. Gen. Physiol. 152, e201811998 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, A. K. et al. Structural basis of temperature sensation by the TRP channel TRPV3. Nat. Struct. Mol. Biol. 26, 994 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhardwaj, R. et al. Inactivation-mimicking block of the epithelial calcium channel TRPV6. Sci. Adv. 6, 1508 (2020).

    Article 

    Google Scholar 

  • Neuberger, A., Nadezhdin, K. D. & Sobolevsky, A. I. Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole. Nat. Commun. 12, 6284 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Efremov, R. G. Dynamic “molecular portraits” of biomembranes drawn by their lateral nanoscale inhomogeneities. Int. J. Mol. Sci. 22, 6250 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Efremov, R. G. et al. Molecular lipophilicity in protein modeling and drug design. Curr. Med. Chem. 14, 393 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koromyslova, A. D., Chugunov, A. O. & Efremov, R. G. Deciphering fine molecular details of proteins’ structure and function with a Protein Surface Topography (PST) method. J. Chem. Inf. Model. 54, 1189 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chugunov, A. et al. Temperature-sensitive gating of TRPV1 channel as probed by atomistic simulations of its trans- and juxtamembrane domains. Sci. Rep. 6, 33112 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eisenberg, D., Lüthy, R. & Bowie, J. U. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 277, 396 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bowie, J. U., Lüthy, R. & Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Clapham, D. E. & Miller, C. A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc. Natl Acad. Sci. USA 108, 19492 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nadezhdin, K. D. et al. TRPV3 activation by different agonists accompanied by lipid dissociation from the vanilloid site. Sci. Adv.10, eadn2453 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, A. K., McGoldrick, L. L. & Sobolevsky, A. I. Structure and gating mechanism of the transient receptor potential channel TRPV3. Nat. Struct. Mol. Biol. 25, 805 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, Z. et al. Gating of human TRPV3 in a lipid bilayer. Nat. Struct. Mol. Biol. 27, 635 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yonkunas, M. & Kurnikova, M. The hydrophobic effect contributes to the closed state of a simplified ion channel through a conserved hydrophobic patch at the pore-helix crossing. Front. Pharmacol. 6, 284 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nadezhdin, K. D. et al. Structure of human TRPV4 in complex with GTPase RhoA. Nat. Commun. 14, 3733 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nadezhdin, K. D. et al. Extracellular cap domain is an essential component of the TRPV1 gating mechanism. Nat. Commun. 12, 2154 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pumroy, R. A. et al. Molecular mechanism of TRPV2 channel modulation by cannabidiol. eLife 8, 48792 (2019).

    Article 

    Google Scholar 

  • Pumroy, R. A. et al. Structural insights into TRPV2 activation by small molecules. Nat. Commun. 13, 2334 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dosey, T. L. et al. Structures of TRPV2 in distinct conformations provide insight into role of the pore turret. Nat. Struct. Mol. Biol. 26, 40 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhen Su, N. et al. Structural mechanisms of TRPV2 modulation by endogenous and exogenous ligands. Nat. Chem. Biol. 19, 72 (2023).

    Article 

    Google Scholar 

  • Kwon, D. H. et al. TRPV4-Rho GTPase complex structures reveal mechanisms of gating and disease. Nat. Commun. 14, 3732 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fluck, E. C., Yazici, A. T., Rohacs, T. & Moiseenkova-Bell, V. Y. Structural basis of TRPV5 regulation by physiological and pathophysiological modulators. Cell Rep. 39, 110737 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hughes, T. E. T. et al. Structural insights on TRPV5 gating by endogenous modulators. Nat. Commun. 9, 4198 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dang, S. et al. Structural insight into TRPV5 channel function and modulation. Proc. Natl Acad. Sci. USA 116, 8869 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neuberger, A. et al. Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein. Nat. Commun. 14, 2659 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nordquist, E. B., Schultz, S. A. & Chen, J. Using metadynamics to explore the free energy of dewetting in biologically relevant nanopores. J. Phys. Chem. B 126, 6428 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trofimov, Y. A., Krylov, N. A. & Efremov, R. G. Confined dynamics of water in transmembrane pore of TRPV1 ion channel. Int J. Mol. Sci. 20, 4285 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kasimova, M. et al. Ion Channel sensing: are fluctuations the crux of the matter? J. Phys. Chem. Lett. 9, 1260 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trofimov Y. A., Minakov A. S., Krylov N. A., Efremov R. G. Structural mechanism of ionic conductivity of the TRPV1 channel. Dokl Biochem. Biophys. https://doi.org/10.1134/S1607672922600245 (2023)

  • Lee, C. H. & MacKinnon, R. Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Science 360, 508–513 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rohaim, A. et al. Open and closed structures of a barium-blocked potassium channel. J. Mol. Biol. 432, 4783–4798 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Twomey, E. et al. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature 549, 60 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rao, S. et al. A heuristic derived from analysis of the ion channel structural proteome permits the rapid identification of hydrophobic gates. Proc. Natl Acad. Sci. USA 116, 13989 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, C. I. et al. Water nanoconfined in a hydrophobic pore: molecular dynamics simulations of transmembrane protein 175 and the influence of water models. ACS Nano 15, 19098 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xenakis, M. N. et al. Cumulative hydropathic topology of a voltage-gated sodium channel at atomic resolution. Proteins 88, 1319 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marks, C. & Deane, C. M. Increasing the accuracy of protein loop structure prediction with evolutionary constraints. Bioinformatics 35, 2585 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Prot. Sci. 27, 112 (2018).

    Article 
    CAS 

    Google Scholar 

  • Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19 (2015).

    Article 

    Google Scholar 

  • Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 8, 1950 (2010).

    Article 

    Google Scholar 

  • Jorgensen, W. L. & Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl Acad. Sci. USA 102, 6665 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comp. Chem. 18, 1463 (1997).

    Article 
    CAS 

    Google Scholar 

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993).

    Article 
    CAS 

    Google Scholar 

  • Joung, I. S. & Cheatham, T. E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 30, 9020 (2008).

    Article 

    Google Scholar 

  • Li, P., Roberts, B. P., Chakravorty, D. K. & Merz, K. M. Jr. Rational design of particle mesh ewald compatible lennard-jones parameters for +2 metal cations in explicit solvent. J. Chem. Theory Comput. 9, 2733 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: an analysis of ALOGP and CLOGP methods. J. Phys. Chem. A 102, 3762 (1998).

    Article 
    CAS 

    Google Scholar 

  • Wildman, S. A. & Crippen, G. M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci. 39, 868 (1999).

    Article 
    CAS 

    Google Scholar 

  • Amanatides J., Woo A. A fast voxel traversal algorithm for ray tracing. Eurographics https://doi.org/10.2312/egtp.19871000 (1987).

  • Goldstein, R. A. & Nagel, R. 3-D Visual simulation. Simulation 16, 25–31 (1971).

    Article 

    Google Scholar 

  • Roth, S. D. Ray casting for modeling solids. Comp. Graph Im. Proc. 18, 109 (1982).

    Article 

    Google Scholar 

  • Connolly, M. L. Analytical molecular surface calculation. J. Appl Cryst. 16, 548–558 (1983).

    Article 
    CAS 

    Google Scholar 

  • Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of gramicidin A. Biophys. J. 65, 2455 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Check out our other content

    Most Popular Articles