OâBrien, J. & Wright, G. D. An ecological perspective of microbial secondary metabolism. Curr. Opin. Biotechnol. 22, 552â558 (2011).
Google ScholarÂ
Scott, J. J. et al. Bacterial protection of beetle-fungus mutualism. Science 1979(322), 63â63 (2008).
Google ScholarÂ
Oh, D. C., Scott, J. J., Currie, C. R. & Clardy, J. Mycangimycin, a polyene peroxide from a mutualist Streptomyces sp.. Org. Lett. 11, 633â636 (2009).
Google ScholarÂ
Kim, D. R. et al. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. https://doi.org/10.1038/s41467-019-12785-3 (2019).
Google ScholarÂ
Traxler, M. F. & Kolter, R. Natural products in soil microbe interactions and evolution. Nat. Prod. Rep. 32, 956â970 (2015).
Google ScholarÂ
Cornforth, D. M. & Foster, K. R. Competition sensing: The social side of bacterial stress responses. Nat. Rev. Microbiol. 11, 285â293 (2013).
Google ScholarÂ
Vaz Jauri, P. & Kinkel, L. L. Nutrient overlap, genetic relatedness and spatial origin influence interaction-mediated shifts in inhibitory phenotype among Streptomyces spp.. FEMS Microbiol. Ecol. 90, 264â275 (2014).
Google ScholarÂ
Lee, N. et al. Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput. Struct. Biotechnol. J. 18, 1548â1556 (2020).
Google ScholarÂ
Nett, M., Ikeda, H. & Moore, B. S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 26, 1362â1384 (2009).
Google ScholarÂ
Hwang, K. S., Kim, H. U., Charusanti, P., Palsson, B. T. & Lee, S. Y. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol. Adv. 32, 255â268 (2014).
Google ScholarÂ
Bode, H. B., Bethe, B., Höfs, R. & Zeeck, A. Big effects from small changes: Possible ways to explore natureâs chemical diversity. ChemBioChem 3, 619â627 (2002).
Google ScholarÂ
Romano, S., Jackson, S. A., Patry, S. & Dobson, A. D. W. Extending the âone strain many compoundsâ (OSMAC) principle to marine microorganisms. Mar. Drugs 16, 1â29 (2018).
Google ScholarÂ
Terlouw, B. R. et al. MIBiG 3.0: A community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res. 51, epub ahead of print (2022).
Blin, K. et al. AntiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29âW35 (2021).
Google ScholarÂ
Bayona, L. M., de Voogd, N. J. & Choi, Y. H. Metabolomics on the study of marine organisms. Metabolomics 18, 1â24 (2022).
Google ScholarÂ
van Bergeijk, D. A., Terlouw, B. R., Medema, M. H. & van Wezel, G. P. Ecology and genomics of Actinobacteria: New concepts for natural product discovery. Nat. Rev. Microbiol. 18, 546â558 (2020).
Google ScholarÂ
Wu, C., Kim, H. K., Van Wezel, G. P. & Choi, Y. H. Metabolomics in the natural products fieldâA gateway to novel antibiotics. Drug Discov. Today Technol. 13, 11â17 (2015).
Google ScholarÂ
Kind, T. et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 37, 513â532 (2018).
Google ScholarÂ
Chaleckis, R., Meister, I., Zhang, P. & Wheelock, C. E. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics. Curr. Opin. Biotechnol. 55, 44â50 (2019).
Google ScholarÂ
Wang, M. et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34, 828â837 (2016).
Google ScholarÂ
Nothias, L. F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905â908 (2020).
Google ScholarÂ
Schmid, R. et al. Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nat. Commun. https://doi.org/10.1038/s41467-021-23953-9 (2021).
Google ScholarÂ
Li, Y., Liu, J., DÃaz-Cruz, G., Cheng, Z. & Bignell, D. R. D. Virulence mechanisms of plant-pathogenic Streptomyces species: An updated review. Microbiology 165, 1025â1040 (2019).
Google ScholarÂ
Cao, Z., Khodakaramian, G., Arakawa, K. & Kinashi, H. Isolation of Borrelidin as a phytotoxic compound from a potato pathogenic Streptomyces strain. Biosci. Biotechnol. Biochem. 76, 353â357 (2012).
Google ScholarÂ
Lapaz, M. I. et al. Isolation and structural characterization of a non-diketopiperazine phytotoxin from a potato pathogenic Streptomyces strain. Nat. Prod. Res. 0, 1â7 (2018).
DÃaz-Cruz, G. A., Liu, J., Tahlan, K. & Bignell, D. R. D. Nigericin and geldanamycin are phytotoxic specialized metabolites produced by the plant pathogen Streptomyces sp. 11-1-2. Microbiol. Spectr. https://doi.org/10.1128/spectrum.02314-21 (2022).
Google ScholarÂ
Zhu, J. et al. Identification and catalytic characterization of a nonribosomal peptide synthetase-like (NRPS-like) enzyme involved in the biosynthesis of echosides from Streptomyces sp. LZ35. Gene 546, 352â358 (2014).
Google ScholarÂ
Fyans, J. K., Altowairish, M. S., Li, Y. & Bignell, D. R. D. Characterization of the coronatine-like phytotoxins produced by the common scab pathogen Streptomyces scabies. Mol. Plant Microbe Interact. 28, 443â454 (2015).
Google ScholarÂ
Johnson, E. G., Joshi, M. V., Gibson, D. M. & Loria, R. Cello-oligosaccharides released from host plants induce pathogenicity in scab-causing Streptomyces species. Physiol. Mol. Plant Pathol. 71, 18â25 (2007).
Google ScholarÂ
Paradkar, A. S. & Jensen, S. E. Functional analysis of the gene encoding the clavaminate synthase 2 isoenzyme involved in clavulanic acid biosynthesis in Streptomyces clavuligerus. J. Bacteriol. 177, 1307â1314 (1995).
Google ScholarÂ
Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Practical Streptomyces Genetics (The John Innes Foundation, 2000).
Ikeda, H., Kotaki, H., Tanaka, H. & Omura, S. Involvement of glucose catabolism in avermectin production by Streptomyces avermitilis. Antimicrob. Agents Chemother. 32, 282â284 (1988).
Google ScholarÂ
Fyans, J. K., Bown, L. & Bignell, D. R. D. Isolation and characterization of plant pathogenic Streptomyces species associated with common scab-infected potato tubers in Newfoundland. Phytopathology 106, 1â46 (2016).
Google ScholarÂ
Celenza, J. L., Grisafi, P. L. & Fink, G. R. A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev. 9, 2131â2142 (1995).
Google ScholarÂ
Du, Y. & Scheres, B. Lateral root formation and the multiple roles of auxin. J. Exp. Bot. 69, 155â167 (2018).
Google ScholarÂ
Hayashi, K. I. Chemical biology in auxin research. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a040105 (2021).
Google ScholarÂ
Stoeckle, D., Thellmann, M. & Vermeer, J. E. Breakoutâlateral root emergence in Arabidopsis thaliana. Curr. Opin. Plant Biol. 41, 67â72 (2018).
Google ScholarÂ
Staswick, P. E. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol. 150, 1310â1321 (2009).
Google ScholarÂ
Yamazoe, A., Hayashi, K. I., Kepinski, S., Leyser, O. & Nozaki, H. Characterization of terfestatin A, a new specific inhibitor for auxin signaling. Plant Physiol. 139, 779â789 (2005).
Google ScholarÂ
Hayashi, K.-I. et al. A new inhibitor of auxin signal transduction, from Streptomyces diastatochromogenes B59. J. Antibiot. 54, 573â581 (2001).
Google ScholarÂ
Hayashi, K. I. et al. A novel inhibitor of auxin action, blocks degradation of AUX/IAA factors. J. Biol. Chem. 278, 23797â23806 (2003).
Google ScholarÂ
Dührkop, K. et al. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nature Methods vol. 16 (Springer, 2019).
Xing, S., Shen, S., Xu, B., Li, X. & Huan, T. BUDDY: Molecular formula discovery via bottom-up MS/MS interrogation. Nat. Methods https://doi.org/10.1038/s41592-023-01850-x (2023).
Google ScholarÂ
Deng, J. et al. P-Terphenyl O-β-glucuronides, DNA topoisomerase inhibitors from Streptomyces sp. LZ35ÎgdmAI. Bioorg. Med. Chem. Lett. 24, 1362â1365 (2014).
Google ScholarÂ
Yamazoe, A., Hayashi, K. I., Kuboki, A., Ohira, S. & Nozaki, H. The isolation, structural determination, and total synthesis of terfestatin A, a novel auxin signaling inhibitor from Streptomyces sp.. Tetrahedron Lett. 45, 8359â8362 (2004).
Google ScholarÂ
Ãlvarez-Ãlvarez, R. et al. Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus. Microb. Cell Fact. 14, 1â12 (2015).
Google ScholarÂ
AbuSara, N. F. et al. Comparative genomics and metabolomics analyses of clavulanic acid-producing Streptomyces species provides insight into specialized metabolism. Front. Microbiol. 10, 1â17 (2019).
Google ScholarÂ
Shaikh, A. A., Nothias, L. F., Srivastava, S. K., Dorrestein, P. C. & Tahlan, K. Specialized metabolites from ribosome engineered strains of Streptomyces clavuligerus. Metabolites https://doi.org/10.3390/metabo11040239 (2021).
Google ScholarÂ
Clinger, J. A. et al. Structure and function of a dual reductase-dehydratase enzyme system involved in p-terphenyl biosynthesis. ACS Chem. Biol. 16, 2816â2824 (2021).
Google ScholarÂ
Gui, M., Zhang, M.-X., Wen-hui, W. & Sun, P. Natural occurrence, bioactivity and biosynthesis of elaiophylin analogues. Molecules 24(21), 3840. https://doi.org/10.3390/molecules24213840 (2019).
Google ScholarÂ
Lee, S. Y. et al. Structure determination and biological activities of elaiophylin produced by Streptomyces sp. MCY-846. J. Microbiol. Biotechnol. 6, 245â249. Preprint at (1996).
Klassen, J. L., Lee, S. R., Poulsen, M., Beemelmanns, C. & Kim, K. H. Efomycins K and L from a termite-associated Streptomyces sp. M56 and their putative biosynthetic origin. Front. Microbiol. 10, 1â8 (2019).
Google ScholarÂ
Han, Y. et al. Halichoblelide D, a new elaiophylin derivative with potent cytotoxic activity from mangrove-derived Streptomyces sp. 219807. Molecules 21, 970 (2016).
Google ScholarÂ
Sheng, Y. et al. Identification of Elaiophylin Skeletal variants from the Indonesian Streptomyces sp. ICBB 9297. J. Nat. Prod. 78, 2768â2775 (2015).
Google ScholarÂ
Wu, C. et al. Identification of Elaiophylin Derivatives from the Marine-Derived Actinomycete Streptomyces sp. 7-145 using PCR-based screening. J. Nat. Prod. 76, 2153â2157 (2013).
Google ScholarÂ
Supong, K. et al. Antimicrobial compounds from endophytic Streptomyces sp. BCC72023 isolated from rice (Oryza sativa L.). Res. Microbiol. 167, 290â298 (2016).
Google ScholarÂ
Burkhardt, K., Fiedler, H.-P., Grabley, S., Thiericke, R. & Zeeck, A. New Cineromycins and Musacins obtained by metabolite pattern analysis of Streptomyces griseoviridis (FH-S 1832). I. Taxonomy, fermentation, isolation and biological activity. J. Antibiot. 49, 432â437 (1996).
Google ScholarÂ
Schneider, A. et al. New Cineromycins and Musacins obtained by metabolite pattern analysis of Streptomyces griseoviridis FH-S 1832). II. Structure Elucidation. J. Antibiot. 49, 438â446 (1996).
Google ScholarÂ
Fukushima, T., Tanaka, M., Gohbara, M. & Fujimori, T. Phytotoxicity of three lactones from Nigrospora sacchari. Phytochemistry 48, 625â630 (1998).
Google ScholarÂ
Ivanova, V., Schlegel, R. & Dornberger, K. Nâ²-methylniphimycin, a novel minor congener of niphimycin from Streptomyces spec. 57-13. J. Basic Microbiol. 38, 415â419 (1998).
Google ScholarÂ
Chen, Y. et al. Discovery of Niphimycin C from Streptomyces yongxingensis sp. nov. as a promising agrochemical fungicide for controlling banana fusarium wilt by destroying the mitochondrial structure and function. J. Agric. Food Chem. 70, 12784â12795 (2022).
Google ScholarÂ
Hu, Y. et al. Identification and proposed relative and absolute configurations of Niphimycins C-E from the marine-derived Streptomyces sp. IMB7-145 by genomic analysis. J. Nat. Prod. 81, 178â187 (2018).
Google ScholarÂ
Usuki, Y. et al. Structure-activity relationship studies on niphimycin, a guanidylpolyol macrolide antibiotic. Part 1: The role of the N-methyl-Nâ³-alkylguanidinium moiety. Bioorg. Med. Chem. Lett. 16, 1553â1556 (2006).
Google ScholarÂ
Takesako, K. & Beppu, T. Studies on new antifungal antibiotics, guanidylfungins A and B. I. Taxonomy, fermentation, isolation and characterization. J. Antibiot. 37, 1161â1169 (1984).
Google ScholarÂ
Karki, S. et al. The methoxymalonyl-acyl carrier protein biosynthesis locus and the nearby gene with the β-ketoacyl synthase domain are involved in the biosynthesis of galbonolides in Streptomyces galbus, but these loci are separate from the modular polyketide synt. FEMS Microbiol. Lett. 310, 69â75 (2010).
Google ScholarÂ
Liu, C., Zhang, J., Lu, C. & Shen, Y. Heterologous expression of galbonolide biosynthetic genes in Streptomyces coelicolor. Antonie van Leeuwenhoek, Int. J. General Mol. Microbiol. 107, 1359â1366 (2015).
Google ScholarÂ
Zhang, J., Chang, X., Li, Y. & Lu, C. Galbonolides from Streptomyces sp. SR107. Nat. Prod. Commun. 11, 1869â1870 (2016).
Google ScholarÂ
Salituro, G. M. et al. Meridamycin: A novel nonimmunosuppressive FKBP12 ligand from Streptomyces hygroscopicus. Tetrahedron Lett. 36, 997â1000 (1995).
Google ScholarÂ
Gollan, P. J., Bhave, M. & Aro, E. M. The FKBP families of higher plants: Exploring the structures and functions of protein interaction specialists. FEBS Lett. 586, 3539â3547 (2012).
Google ScholarÂ
Xiong, Y. & Sheen, J. The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol. 164, 499â512 (2014).
Google ScholarÂ
Xiong, F. et al. Tomato FK506 binding protein 12KD (FKBP12) mediates the interaction between rapamycin and target of rapamycin (TOR). Front. Plant. Sci. https://doi.org/10.3389/fpls.2016.01746 (2016).
Google ScholarÂ
Montané, M. H. & Menand, B. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change. J. Exp. Bot. 64, 4361â4374 (2013).
Google ScholarÂ
Liu, M., Lu, C. & Shen, Y. Four new meridamycin congeners from: Streptomyces sp. SR107. RSC Adv. 6, 49792â49796 (2016).
Google ScholarÂ
He, M., Haltli, B., Summers, M., Feng, X. & Hucul, J. Isolation and characterization of meridamycin biosynthetic gene cluster from Streptomyces sp. NRRL 30748. Gene 377, 109â118 (2006).
Google ScholarÂ
Sun, Y. et al. Organization of the biosynthetic gene cluster in Streptomyces sp. DSM 4137 for the novel neuroprotectant polyketide meridamycin. Microbiology 152, 3507â3515 (2006).
Google ScholarÂ
Natsume, M., Tashiro, N., Doi, A., Nishi, Y. & Kawaide, H. Effects of concanamycins produced by Streptomyces scabies on lesion type of common scab of potato. J. General Plant Pathol. 83, 78â82 (2017).
Google ScholarÂ
Igarashi, Y., Iida, T., Yoshida, R. & Furumai, T. Pteridic acids A and B, novel plant growth promoters with auxin-like activity from Streptomyces hygroscopicus TP-A0451. J. Antibiot. 55, 764â767 (2002).
Google ScholarÂ
Yang, Z. et al. Streptomyces alleviate abiotic stress in plant by producing pteridic acids. bioRxiv 2022.11.18.517137 (2022).
Buell, C. R. et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. 100, 10181â10186 (2003).
Google ScholarÂ
Russell, D. W. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, 2001).
Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918â920 (2012).
Google ScholarÂ
Pluskal, T., Castillo, S., Villar-Briones, A. & OreÅ¡iÄ, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinf. 11, 395 (2010).
Google ScholarÂ
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498â2504 (2003).
Google ScholarÂ
Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender, J. & Neumann, S. MetFrag relaunched: Incorporating strategies beyond in silico fragmentation. J. Cheminform. 8, 1â16 (2016).
Google ScholarÂ
Dührkop, K., Shen, H., Meusel, M., Rousu, J. & Böcker, S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. USA 112, 12580â12585 (2015).
Google ScholarÂ
Loria, R. et al. Differential production of thaxtomins by pathogenic Streptomyces species in vitro. Phytopathology 85, 537â541 (1995).
Google ScholarÂ
Blin, K. et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad344 (2023).
Google ScholarÂ
Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol 16, 60â68 (2020).
Google ScholarÂ
Gilchrist, C. L. M. & Chooi, Y. H. Clinker & clustermap.js: Automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473â2475 (2021).
Google ScholarÂ
van den Belt, M. et al. CAGECAT: The CompArative GEne cluster analysis toolbox for rapid search and visualisation of homologous gene clusters. BMC Bioinform. 24, 181 (2023).
Google ScholarÂ
Harrison, K. J., Crécy-Lagard, V. D. & Zallot, R. Gene graphics: A genomic neighborhood data visualization web application. Bioinformatics 34, 1406â1408 (2018).
Google ScholarÂ
de Mendiburu, F. Agricolae: Statistical procedures for agricultural research. Preprint at (2020).
Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Google ScholarÂ
Ahlmann-Eltze, C. ggsignif: Significance Brackets for âggplot2â. Preprint at (2019).
Pedersen, T. L. Patchwork: The composer of plots. Preprint at (2020).