Sunday, December 29, 2024

Iron oxide nanoparticles induce ferroptosis under mild oxidative stress in vitro

BiochemistryIron oxide nanoparticles induce ferroptosis under mild oxidative stress in vitro


  • Aramouni, K. et al. Biochemical and cellular basis of oxidative stress: Implications for disease onset. J. Cell. Physiol. 238, 1951–1963 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martemucci, G. et al. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2, 48–78 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yan, L. J. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol. 2, 165–169 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiao, R. et al. Magnetic iron oxide nanoparticles for brain imaging and drug delivery. Adv. Drug Deliv. Rev. 197, 114822 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Z. et al. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioact. Mater. 12, 214–245 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Abdel Maksoud, M. I. A. et al. Engineered magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: a review. Environ. Chem. Lett. 20, 519–562 (2022).

    Article 
    CAS 

    Google Scholar 

  • Pucci, C., Degl’Innocenti, A., Belenli Gümüş, M. & Ciofani, G. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era. Biomater. Sci. 10, 2103–2121 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, G., Gao, J., Ai, H. & Chen, X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9, 1533–1545 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Malhotra, N. et al. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules 25, 3159 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sengul, A. B. & Asmatulu, E. Toxicity of metal and metal oxide nanoparticles: a review. Environ. Chem. Lett. 18, 1659–1683 (2020).

    Article 
    CAS 

    Google Scholar 

  • Nowak-Jary, J. & Machnicka, B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J. Nanobiotechnol. 20, 305 (2022).

    Article 
    CAS 

    Google Scholar 

  • Vakili-Ghartavol, R. et al. Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artif. Cell Nanomed. B 48, 443–451 (2020).

    Article 
    CAS 

    Google Scholar 

  • Chrishtop, V. V., Mironov, V. A., Prilepskii, A. Y., Nikonorova, V. G. & Vinogradov, V. V. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology 15, 167–204 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dixon, Scott J. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dixon, S. J. & Olzmann, J. A. The cell biology of ferroptosis. Nat. Rev. Mol. Cell. Biol. 25, 424–442 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. & Wang, J. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: A critical review. Chem. Eng. J. 466, 143147 (2023).

    Article 
    CAS 

    Google Scholar 

  • Kurz, T., Terman, A. & Brunk, U. T. Autophagy, ageing and apoptosis: The role of oxidative stress and lysosomal iron. Arch. Biochem. Biophy. 462, 220–230 (2007).

    Article 
    CAS 

    Google Scholar 

  • Repetto, M. G., Ferrarotti, N. F. & Boveris, A. The involvement of transition metal ions on iron-dependent lipid peroxidation. Arch. Toxicol. 84, 255–262 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, C.-C. et al. Cellular organelle-dependent cytotoxicity of iron oxide nanoparticles and its implications for cancer diagnosis and treatment: A mechanistic investigation. Chem. Mater. 28, 9017–9025 (2016).

    Article 
    CAS 

    Google Scholar 

  • Iavicoli, I., Fontana, L. & Nordberg, G. The effects of nanoparticles on the renal system. Crit. Rev. Toxicol. 46, 490–560 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wen, X. et al. Tumor microenvironment cascade activated biodegradable nano-enzymes for glutathione-depletion and ultrasound-enhanced chemodynamic therapy. Small https://doi.org/10.1002/smll.202405457 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Gu, J. et al. Cerium–luteolin nanocomplexes in managing inflammation-related diseases by antioxidant and immunoregulation. ACS Nano 18, 6229–6242 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Srivastava, A., Tomar, B., Sharma, D. & Rath, S. K. Mitochondrial dysfunction and oxidative stress: Role in chronic kidney disease. Life Sci. 319, 121432 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schulz, M.-C. et al. Acidosis activates the Nrf2 pathway in renal proximal tubule-derived cells through a crosstalk with renal fibroblasts. Antioxidants 12, 412 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, M. et al. High glucose-induced kidney injury via activation of necroptosis in diabetic kidney disease. Oxid. Med. Cell. Longev. 2023, 2713864 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, C. et al. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses. Arch. Toxicol. 89, 357–369 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghasemi, M., Liang, S., Luu, Q. M. & Kempson, I. Cell Viability Assays: Methods and Protocols (Springer, 2023).

    Google Scholar 

  • Wojtala, A. et al. Methods in Enzymology (Academic Press, 2014).

    Google Scholar 

  • Li, Z. et al. Pterostilbene upregulates MICA/B via the PI3K/AKT signaling pathway to enhance the capability of natural killer cells to kill cervical cancer cells. Exp. Cell. Res. 435, 113933 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sivandzade, F., Bhalerao, A. & Cucullo, L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protocol. 9, e3128 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jesus, A. D. et al. Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J. Vis. Exp. https://doi.org/10.3791/61122-v (2020).

    Article 

    Google Scholar 

  • Thomé, M. P. et al. Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy. J. Cell Sci. 129, 4622–4632 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Liao, M. et al. METTL3-mediated m6A modification of NORAD inhibits the ferroptosis of vascular smooth muscle cells to attenuate the aortic dissection progression in an YTHDF2-dependent manner. Mol. Cell. Biochem. 479, 3471–3487 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, P.-W. et al. Treatment with the ferroptosis inhibitor ferrostatin-1 attenuates noise-induced hearing loss by suppressing ferroptosis and apoptosis. Oxid. Med. Cell Longev. 2022, 3373828 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frtús, A. et al. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. J. Control Release 328, 59–77 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Etemadi, H., Buchanan, J. K., Kandile, N. G. & Plieger, P. G. Iron oxide nanoparticles: Physicochemical characteristics and historical developments to commercialization for potential technological applications. ACS Biomater. Sci. Eng. 7, 5432–5450 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hajam, Y. A. et al. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells 11, 552 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stockwell, B. R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scarpellini, C. et al. Beyond ferrostatin-1: a comprehensive review of ferroptosis inhibitors. Trends Pharmacol. Sci. 44, 902–916 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Donaldson, K., Stone, V., Tran, C. L., Kreyling, W. & Borm, P. J. A. Nanotoxicology. Occup. Environ. Med. 61, 727 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, X., Li, X. & Tay, A. Advances in techniques to characterize cell-nanomaterial interactions (CNI). Nano Today 55, 102149 (2024).

    Article 
    CAS 

    Google Scholar 

  • Check out our other content

    Most Popular Articles