Aramouni, K. et al. Biochemical and cellular basis of oxidative stress: Implications for disease onset. J. Cell. Physiol. 238, 1951–1963 (2023).
Google ScholarÂ
Martemucci, G. et al. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2, 48–78 (2022).
Google ScholarÂ
Yan, L. J. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol. 2, 165–169 (2014).
Google ScholarÂ
Qiao, R. et al. Magnetic iron oxide nanoparticles for brain imaging and drug delivery. Adv. Drug Deliv. Rev. 197, 114822 (2023).
Google ScholarÂ
Zhao, Z. et al. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioact. Mater. 12, 214–245 (2022).
Google ScholarÂ
Abdel Maksoud, M. I. A. et al. Engineered magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: a review. Environ. Chem. Lett. 20, 519–562 (2022).
Google ScholarÂ
Pucci, C., Degl’Innocenti, A., Belenli Gümüş, M. & Ciofani, G. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era. Biomater. Sci. 10, 2103–2121 (2022).
Google ScholarÂ
Liu, G., Gao, J., Ai, H. & Chen, X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9, 1533–1545 (2013).
Google ScholarÂ
Malhotra, N. et al. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules 25, 3159 (2020).
Google ScholarÂ
Sengul, A. B. & Asmatulu, E. Toxicity of metal and metal oxide nanoparticles: a review. Environ. Chem. Lett. 18, 1659–1683 (2020).
Google ScholarÂ
Nowak-Jary, J. & Machnicka, B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J. Nanobiotechnol. 20, 305 (2022).
Google ScholarÂ
Vakili-Ghartavol, R. et al. Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artif. Cell Nanomed. B 48, 443–451 (2020).
Google ScholarÂ
Chrishtop, V. V., Mironov, V. A., Prilepskii, A. Y., Nikonorova, V. G. & Vinogradov, V. V. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology 15, 167–204 (2021).
Google ScholarÂ
Dixon, Scott J. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).
Google ScholarÂ
Dixon, S. J. & Olzmann, J. A. The cell biology of ferroptosis. Nat. Rev. Mol. Cell. Biol. 25, 424–442 (2024).
Google ScholarÂ
Liu, Y. & Wang, J. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: A critical review. Chem. Eng. J. 466, 143147 (2023).
Google ScholarÂ
Kurz, T., Terman, A. & Brunk, U. T. Autophagy, ageing and apoptosis: The role of oxidative stress and lysosomal iron. Arch. Biochem. Biophy. 462, 220–230 (2007).
Google ScholarÂ
Repetto, M. G., Ferrarotti, N. F. & Boveris, A. The involvement of transition metal ions on iron-dependent lipid peroxidation. Arch. Toxicol. 84, 255–262 (2010).
Google ScholarÂ
Huang, C.-C. et al. Cellular organelle-dependent cytotoxicity of iron oxide nanoparticles and its implications for cancer diagnosis and treatment: A mechanistic investigation. Chem. Mater. 28, 9017–9025 (2016).
Google ScholarÂ
Iavicoli, I., Fontana, L. & Nordberg, G. The effects of nanoparticles on the renal system. Crit. Rev. Toxicol. 46, 490–560 (2016).
Google ScholarÂ
Wen, X. et al. Tumor microenvironment cascade activated biodegradable nano-enzymes for glutathione-depletion and ultrasound-enhanced chemodynamic therapy. Small https://doi.org/10.1002/smll.202405457 (2024).
Google ScholarÂ
Gu, J. et al. Cerium–luteolin nanocomplexes in managing inflammation-related diseases by antioxidant and immunoregulation. ACS Nano 18, 6229–6242 (2024).
Google ScholarÂ
Srivastava, A., Tomar, B., Sharma, D. & Rath, S. K. Mitochondrial dysfunction and oxidative stress: Role in chronic kidney disease. Life Sci. 319, 121432 (2023).
Google ScholarÂ
Schulz, M.-C. et al. Acidosis activates the Nrf2 pathway in renal proximal tubule-derived cells through a crosstalk with renal fibroblasts. Antioxidants 12, 412 (2023).
Google ScholarÂ
Guo, M. et al. High glucose-induced kidney injury via activation of necroptosis in diabetic kidney disease. Oxid. Med. Cell. Longev. 2023, 2713864 (2023).
Google ScholarÂ
Luo, C. et al. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses. Arch. Toxicol. 89, 357–369 (2015).
Google ScholarÂ
Ghasemi, M., Liang, S., Luu, Q. M. & Kempson, I. Cell Viability Assays: Methods and Protocols (Springer, 2023).
Wojtala, A. et al. Methods in Enzymology (Academic Press, 2014).
Li, Z. et al. Pterostilbene upregulates MICA/B via the PI3K/AKT signaling pathway to enhance the capability of natural killer cells to kill cervical cancer cells. Exp. Cell. Res. 435, 113933 (2024).
Google ScholarÂ
Sivandzade, F., Bhalerao, A. & Cucullo, L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protocol. 9, e3128 (2019).
Google ScholarÂ
Jesus, A. D. et al. Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J. Vis. Exp. https://doi.org/10.3791/61122-v (2020).
Google ScholarÂ
Thomé, M. P. et al. Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy. J. Cell Sci. 129, 4622–4632 (2016).
Google ScholarÂ
Liao, M. et al. METTL3-mediated m6A modification of NORAD inhibits the ferroptosis of vascular smooth muscle cells to attenuate the aortic dissection progression in an YTHDF2-dependent manner. Mol. Cell. Biochem. 479, 3471–3487 (2024).
Google ScholarÂ
Ma, P.-W. et al. Treatment with the ferroptosis inhibitor ferrostatin-1 attenuates noise-induced hearing loss by suppressing ferroptosis and apoptosis. Oxid. Med. Cell Longev. 2022, 3373828 (2022).
Google ScholarÂ
Frtús, A. et al. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. J. Control Release 328, 59–77 (2020).
Google ScholarÂ
Etemadi, H., Buchanan, J. K., Kandile, N. G. & Plieger, P. G. Iron oxide nanoparticles: Physicochemical characteristics and historical developments to commercialization for potential technological applications. ACS Biomater. Sci. Eng. 7, 5432–5450 (2021).
Google ScholarÂ
Hajam, Y. A. et al. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells 11, 552 (2022).
Google ScholarÂ
Stockwell, B. R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).
Google ScholarÂ
Scarpellini, C. et al. Beyond ferrostatin-1: a comprehensive review of ferroptosis inhibitors. Trends Pharmacol. Sci. 44, 902–916 (2023).
Google ScholarÂ
Donaldson, K., Stone, V., Tran, C. L., Kreyling, W. & Borm, P. J. A. Nanotoxicology. Occup. Environ. Med. 61, 727 (2004).
Google ScholarÂ
Huang, X., Li, X. & Tay, A. Advances in techniques to characterize cell-nanomaterial interactions (CNI). Nano Today 55, 102149 (2024).
Google ScholarÂ