Arnold, F. H. Innovation by evolution: bringing new chemistry to life (nobel lecture). Angew. Chem. Int. Ed. 58, 14420â14426 (2019).
Google ScholarÂ
Tawfik, D. S. Biochemistry. Loop grafting and the origins of enzyme species. Science 311, 475â476 (2006).
Google ScholarÂ
Burroughs, A. M., Allen, K. N., Dunaway-Mariano, D. & Aravind, L. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J. Mol. Biol. 361, 1003â1034 (2006).
Google ScholarÂ
Akiva, E., Copp, J. N., Tokuriki, N. & Babbitt, P. C. Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily. Proc. Natl Acad. Sci. USA 114, E9549âE9558 (2017).
Google ScholarÂ
Monzingo, A. F., Marcotte, E. M., Hart, P. J. & Robertus, J. D. Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core. Nat. Struct. Biol. 3, 133â140 (1996).
Google ScholarÂ
Park, H.-S. et al. Design and evolution of new catalytic activity with an existing protein scaffold. Science 311, 535â538 (2006).
Google ScholarÂ
Afriat-Jurnou, L., Jackson, C. J. & Tawfik, D. S. Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry 51, 6047â6055 (2012).
Google ScholarÂ
Miton, C. M. & Tokuriki, N. Insertions and deletions (indels): a missing piece of the protein engineering jigsaw. Biochemistry 62, 148â157 (2023).
Google ScholarÂ
Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269â276 (2001).
Google ScholarÂ
Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275â282 (2002).
Google ScholarÂ
Fushinobu, S., Nishimasu, H., Hattori, D., Song, H.-J. & Wakagi, T. Structural basis for the bifunctionality of fructose-1,6-bisphosphate aldolase/phosphatase. Nature 478, 538â541 (2011).
Google ScholarÂ
Hoque, M. A. et al. Stepwise loop insertion strategy for active site remodeling to generate novel enzyme functions. ACS Chem. Biol. 12, 1188â1193 (2017).
Google ScholarÂ
Dodani, S. C. et al. Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models. Nat. Chem. 8, 419â425 (2016).
Google ScholarÂ
Hedstrom, L., Szilagyi, L. & Rutter, W. J. Converting trypsin to chymotrypsin: the role of surface loops. Science 255, 1249â1253 (1992).
Google ScholarÂ
Ma, W., Tang, C. & Lai, L. Specificity of trypsin and chymotrypsin: loop-motion-controlled dynamic correlation as a determinant. Biophys. J. 89, 1183â1193 (2005).
Google ScholarÂ
Gunasekaran, K., Ma, B. & Nussinov, R. Triggering loops and enzyme function: identification of loops that trigger and modulate movements. J. Mol. Biol. 332, 143â159 (2003).
Google ScholarÂ
Colombo, G. Computing allostery: from the understanding of biomolecular regulation and the discovery of cryptic sites to molecular design. Curr. Opin. Struct. Biol. 83, 102702 (2023).
Google ScholarÂ
Schlumbaum, A., Mauch, F., Vögeli, U. & Boller, T. Plant chitinases are potent inhibitors of fungal growth. Nature 324, 365â367 (1986).
Google ScholarÂ
Taira, T. et al. Cloning and characterization of a small family 19 chitinase from moss (Bryum coronatum). Glycobiology 21, 644â654 (2011).
Google ScholarÂ
Fukamizo, T. et al. A flexible loop controlling the enzymatic activity and specificity in a glycosyl hydrolase family 19 endochitinase from barley seeds (Hordeum vulgare L.). Biochim. Biophys. Acta 1794, 1159â1167 (2009).
Google ScholarÂ
Tanaka, J., Fukamizo, T. & Ohnuma, T. Enzymatic properties of a GH19 chitinase isolated from rice lacking a major loop structure involved in chitin binding. Glycobiology 27, 477â485 (2017).
Google ScholarÂ
Takenaka, S., Ohnuma, T. & Fukamizo, T. Insertion of a loop structure into the âlooplessâ GH19 chitinase from Bryum coronatum. J. Appl. Glycosci. 64, 39â42 (2017).
Google ScholarÂ
Kawamoto, D., Takashima, T., Fukamizo, T., Numata, T. & Ohnuma, T. A conserved loop structure of GH19 chitinases assists the enzyme function from behind the core-functional region. Glycobiology 32, 356â364 (2022).
Google ScholarÂ
Mizuno, R. et al. Role of the loop structure of the catalytic domain in rice class I chitinase. J. Biochem. 143, 487â495 (2008).
Google ScholarÂ
Sljoka, A. Probing allosteric mechanism with long-range rigidity transmission across protein networks. Methods Mol. Biol. 2253, 61â75 (2021).
Google ScholarÂ
Whiteley, W. Counting out to the flexibility of molecules. Phys. Biol. 2, S116âS126 (2005).
Google ScholarÂ
Sljoka, A. Structural and functional analysis of proteins using rigidity theory. in Sublinear Computation Paradigm: Algorithmic Revolution in the Big Data Era (eds. Katoh, N. et al.) 337â367 (Springer Singapore, 2022). https://doi.org/10.1007/978-981-16-4095-7_14.
Huang, S. K. et al. Delineating the conformational landscape of the adenosine A2A receptor during G protein coupling. Cell 184, 1884â1894.e14 (2021).
Google ScholarÂ
Mehrabi, P. et al. Substrate-based allosteric regulation of a homodimeric enzyme. J. Am. Chem. Soc. 141, 11540â11556 (2019).
Google ScholarÂ
Baksh, K. A., Augustine, J., Sljoka, A., Prosser, R. S. & Zamble, D. B. Mechanistic insights into the nickel-dependent allosteric response of the Helicobacter pylori NikR transcription factor. J. Biol. Chem. 102785. https://doi.org/10.1016/j.jbc.2022.102785 (2022).
Ye, L. et al. Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations. Nat. Commun. 9, 1372 (2018).
Google ScholarÂ
Jacobs, D. J., Rader, A. J., Kuhn, L. A. & Thorpe, M. F. Protein flexibility predictions using graph theory. Proteins 44, 150â165 (2001).
Google ScholarÂ
Yamagami, T. & Funatsu, G. Identification of the tryptophan residue located at the substrate-binding site of rye seed chitinase-c. Biosci. Biotechnol. Biochem. 59, 1076â1081 (1995).
Google ScholarÂ
Chothia, C., Gough, J., Vogel, C. & Teichmann, S. A. Evolution of the protein repertoire. Science 300, 1701â1703 (2003).
Google ScholarÂ
Rockah-Shmuel, L. et al. Correlated occurrence and bypass of frame-shifting insertion-deletions (InDels) to give functional proteins. PLoS Genet. 9, e1003882 (2013).
Google ScholarÂ
Emond, S. et al. Accessing unexplored regions of sequence space in directed enzyme evolution via insertion/deletion mutagenesis. Nat. Commun. 11, 3469 (2020).
Google ScholarÂ
Schenkmayerova, A. et al. Engineering the protein dynamics of an ancestral luciferase. Nat. Commun. 12, 3616 (2021).
Google ScholarÂ
Ross, C. M., Foley, G., Boden, M. & Gillam, E. M. J. Using the evolutionary history of proteins to engineer insertion-deletion mutants from robust, ancestral templates using graphical representation of ancestral sequence predictions (GRASP). Methods Mol. Biol. 2397, 85â110 (2022).
Google ScholarÂ
Macdonald, C. B. et al. DIMPLE: deep insertion, deletion, and missense mutation libraries for exploring protein variation in evolution, disease, and biology. Genome Biol. 24, 36 (2023).
Google ScholarÂ
Campbell, E. et al. The role of protein dynamics in the evolution of new enzyme function. Nat. Chem. Biol. 12, 944â950 (2016).
Google ScholarÂ
Liu, J., Tan, H. & Rost, B. Loopy proteins appear conserved in evolution. J. Mol. Biol. 322, 53â64 (2002).
Google ScholarÂ
Tóth-Petróczy, A. & Tawfik, D. S. Protein insertions and deletions enabled by neutral roaming in sequence space. Mol. Biol. Evol. 30, 761â771 (2013).
Google ScholarÂ
Tokuriki, N. et al. Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nat. Commun. 3, 1257 (2012).
Google ScholarÂ
Noda-Garcia, L. & Tawfik, D. S. Enzyme evolution in natural products biosynthesis: target- or diversity-oriented? Curr. Opin. Chem. Biol. 59, 147â154 (2020).
Google ScholarÂ
Kaltenbach, M., Emond, S., Hollfelder, F. & Tokuriki, N. Functional trade-offs in promiscuous enzymes cannot be explained by intrinsic mutational robustness of the native activity. PLoS Genet. 12, e1006305 (2016).
Google ScholarÂ
Arantes, V. & Saddler, J. N. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol. Biofuels 4, 3 (2011).
Google ScholarÂ
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480âD489 (2021).
Google ScholarÂ
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059â3066 (2002).
Google ScholarÂ
Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276â3278 (2014).
Google ScholarÂ
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268â274 (2015).
Google ScholarÂ
Nozaki, S. & Niki, H. Exonuclease III (XthA) enforces in vivo DNA cloning of Escherichia coli to create cohesive ends. J. Bacteriol. 201, e00660-e718, (2019).
Google ScholarÂ
Imoto, T. & Yagishita, K. A simple activity measurement of lysozyme. Agric. Biol. Chem. 35, 1154â1156 (1971).
Google ScholarÂ
Hirata, K. et al. ZOO: an automatic data-collection system for high-throughput structure analysis in protein microcrystallography. Acta Crystallogr. D Struct. Biol. 75, 138â150 (2019).
Google ScholarÂ
Yamashita, K., Hirata, K. & Yamamoto, M. KAMO: towards automated data processing for microcrystals. Acta Crystallogr. D Struct. Biol. 74, 441â449 (2018).
Google ScholarÂ
Kabsch, W. XDS. in International Tables for Crystallography: Crystallography of Biological Macromolecules (eds. Arnold, E., Himmel, D. M. & Rossmann, M. G.) vol. F304â310 (International Union of Crystallography, 2012).
Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795â800 (1993).
Google ScholarÂ
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235â242 (2011).
Google ScholarÂ
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352â367 (2012).
Google ScholarÂ
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658â674 (2007).
Google ScholarÂ
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583â589 (2021).
Google ScholarÂ
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126â2132 (2004).
Google ScholarÂ
Páll, S. et al. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys. 153, 134110 (2020).
Google ScholarÂ
Huang, J. & MacKerell, A. D. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34, 2135â2145 (2013).
Google ScholarÂ
Izadi, S., Anandakrishnan, R. & Onufriev, A. V. Building water models: a different approach. J. Phys. Chem. Lett. 5, 3863â3871 (2014).
Google ScholarÂ
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).
Google ScholarÂ
Parrinello, M. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981).
Google ScholarÂ
Jacobs, D. J. & Hendrickson, B. An algorithm for two-dimensional rigidity percolation: the pebble game. J. Comput. Phys. 137, 346â365 (1997).
Google ScholarÂ