Saturday, September 21, 2024

The effect of DMSO on Saccharomyces cerevisiae yeast with different energy metabolism and antioxidant status

BiochemistryThe effect of DMSO on Saccharomyces cerevisiae yeast with different energy metabolism and antioxidant status


  • Andreae, M. O. Determination of trace quantities of dimethylsulfoxide in aqueous solutions. Anal. Chem. 52, 150–153. https://doi.org/10.1021/ac50051a035 (1980).

    Article 
    CAS 

    Google Scholar 

  • De Mora, S., Lee, P., Grout, A., Schall, C. & Heumann, K. Aspects of the biogeochemistry of sulphur in glacial melt water ponds on the McMurdo Ice Shelf. Antarctica. Antarct. Sci. 8, 15–22. https://doi.org/10.1017/S0954102096000041 (1996).

    Article 
    ADS 

    Google Scholar 

  • Asher, E. C., Dacey, J. W. H., Jarniková, T. & Tortell, P. D. Measurement of DMS, DMSO, and DMSP in natural waters by automated sequential chemical analysis. Limnol. Oceanogr. Methods 13, 451–462. https://doi.org/10.1002/lom3.10039 (2015).

    Article 

    Google Scholar 

  • Tebbe, D. A. et al. Microbial drivers of DMSO reduction and DMS-dependent methanogenesis in saltmarsh sediments. ISME J. 17, 2340–2351. https://doi.org/10.1038/s41396-023-01539-1 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schäfer, H., Myronova, N. & Boden, R. Microbial degradation of dimethylsulphide and related C1-sulphur compounds: Organisms and pathways controlling fluxes of sulphur in the biosphere. J. Exp. Bot. 61, 315–334. https://doi.org/10.1093/jxb/erp355 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zajáros, A., Szita, K., Matolcsy, K. & Horváth, D. Life cycle sustainability assessment of DMSO solvent recovery from hazardous waste water. Period. Polytech. Chem. Eng. 62, 305–309. https://doi.org/10.3311/PPch.11097 (2018).

    Article 

    Google Scholar 

  • Notman, R., Noro, M., O’Malley, B. & Anwar, J. Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. J. Am. Chem. Soc. 128, 13982–13983. https://doi.org/10.1021/ja063363t (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoshiike, T. et al. Skin barrier defect in atopic dermatitis: Increased permeability of the stratum corneum using dimethyl sulfoxide and theophylline. J. Dermatol. Sci. 5, 92–96. https://doi.org/10.1016/0923-1811(93)90076-2 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, Z. H. et al. Topical diclofenac therapy for osteoarthritis: A meta-analysis of randomized controlled trials. Clin. Rheumatol. 35, 1253–1261. https://doi.org/10.1007/s10067-015-3021-z (2016).

    Article 
    PubMed 

    Google Scholar 

  • Tjernberg, A., Markova, N., Griffiths, W. J. & Hallén, D. DMSO-related effects in protein characterization. J. Biomol. Screen. 11, 131–137. https://doi.org/10.1177/1087057105284218 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoang, B. X. et al. The rationality of implementation of dimethyl sulfoxide as differentiation-inducing agent in cancer therapy. Cancer Diagn. Progn. 3, 1–8 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, R. et al. Dimethyl sulfoxide, a potent oral radioprotective agent, confers radioprotection of hematopoietic stem and progenitor cells independent of apoptosis. Free Radic. Biol. Med. 153, 1–11. https://doi.org/10.1016/j.freeradbiomed.2020.03.021 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shulyak, A. V. et al. Modern aspects of the use of dimethyl sulfoxide (DMSO). Pharmacologyonline 1, 82–89 (2021).

    CAS 

    Google Scholar 

  • Awan, M. et al. Dimethyl sulfoxide: A central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen. Med. 15, 1463–1491. https://doi.org/10.2217/rme-2019-0145 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Phillis, J. W., Estevez, A. Y. & O’Regan, M. H. Protective effects of the free radical scavengers, dimethyl sulfoxide and ethanol, in cerebral ischemia in gerbils. Neurosci. Lett. 244, 109–111. https://doi.org/10.1016/S0304-3940(98)00139-6 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sanmartín-Suárez, C., Soto-Otero, R., Sánchez-Sellero, I. & Méndez-Álvarez, E. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants. J. Pharmacol. Toxicol. Methods 63, 209–215. https://doi.org/10.1016/j.vascn.2010.10.004 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mizuno, M. et al. Cell membrane fluidity and ROS resistance define DMSO tolerance of cryopreserved synovial MSCs and HUVECs. Stem Cell Res. Ther. 13, 177. https://doi.org/10.1186/s13287-022-02850-y (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, X.-G., Li, X.-X., Bao, Y.-Z., Xing, N.-Z. & Chen, Y. Responses of human lens epithelial cells to quercetin and DMSO. Investig. Ophthalmol. Vis. Sci. 48, 3714–3718. https://doi.org/10.1167/iovs.06-1304 (2007).

    Article 

    Google Scholar 

  • Sangweni, N. F. et al. The implication of low dose dimethyl sulfoxide on mitochondrial function and oxidative damage in cultured cardiac and cancer cells. Molecules 26, 7305. https://doi.org/10.3390/molecules26237305 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galvao, J. et al. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 28, 1317–1330. https://doi.org/10.1096/fj.13-235440 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan, Z., Zhao, B. & Zhang, Y. Effects of dimethylsulfoxide on behavior and antioxidant enzymes response of planarian Dugesia japonica. Toxicol. Ind. Health. 28, 449–457. https://doi.org/10.1177/0748233711414609 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Randhawa, M. Dimethyl sulfoxide (DMSO) inhibits the germination of Candida albicans and the arthrospores of Trichophyton mentagrophytes. Jpn. J. Med. Mycol. 49, 125–128. https://doi.org/10.3314/jjmm.49.125 (2008).

    Article 
    CAS 

    Google Scholar 

  • Petruccelli, V., Brasili, E., Varone, L., Valletta, A. & Pasqua, G. Antifungal activity of dimethyl sulfoxide against Botrytis cinerea and phytotoxicity on tomato and lettuce plants. Plant Biosyst. 154, 455–462. https://doi.org/10.1080/11263504.2020.1779846 (2020).

    Article 

    Google Scholar 

  • Lewinska, A., Bilinski, T. & Bartosz, G. Limited effectiveness of antioxidants in the protection of yeast defective in antioxidant proteins. Free Radic. Res. 38, 1159–1165. https://doi.org/10.1080/10715760400009860 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koziol, S., Zagulski, M., Biliński, T. & Bartosz, G. Antioxidants protect the yeast Saccharomyces cerevisiae against hypertonic stress. Free Radic. Res. 39, 365–371. https://doi.org/10.1080/10715760500045855 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wallace, M. A., Bailey, S., Fukuto, J. M., Valentine, J. S. & Gralla, E. B. Induction of phenotypes resembling CuZn-superoxide dismutase deletion in wild-type yeast cells: An in vivo assay for the role of superoxide in the toxicity of redox-cycling compounds. Chem. Res. Toxicol. 18, 1279–2186. https://doi.org/10.1021/tx050050n (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sadowska-Bartosz, I., Pączka, A., Mołoń, M. & Bartosz, G. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 13, 820–830. https://doi.org/10.1111/1567-1364.12091 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Święciło, A., Krawiec, Z., Wawryn, J., Bartosz, G. & Biliński, T. Effect of stress on the life span of the yeast Saccharomyces cerevisiae. Acta Biochim. Pol. 42, 355–364 (2000).

    Article 

    Google Scholar 

  • Krzepiłko, A. et al. Ascorbate restores lifespan of superoxide-dismutase deficient yeast. Free Radic. Res. 38, 1019–1024. https://doi.org/10.1080/10715760410001717327 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wawryn, J., Święciło, A., Bartosz, G. & Biliński, T. Effect of superoxide dismutase deficiency on the life span of the yeast Saccharomyces cerevisiae. An oxygen-independent role of Cu, Zn-superoxide dismutase. Biochim. Biophys. Acta 1570, 199–202. https://doi.org/10.1016/S0304-4165(02)00197-6 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Święciło, A. Role of monophenols in the recovery process of wild-type yeast cells subjected to severe environmental stress. Pol. J. Food Nutr. Sci. 63, 187–191. https://doi.org/10.2478/v10222-012-0084-2 (2013).

    Article 
    CAS 

    Google Scholar 

  • Biliński, T., Krawiec, Z., Liczmański, A. & Litwińska, J. Is hydroxyl radical generated by the Fenton reaction in vivo? Biochem. Biophys. Res. Commun. 130, 533–539. https://doi.org/10.1016/0006-291X(85)90449-8 (1985).

    Article 
    PubMed 

    Google Scholar 

  • Rodrigues-Pousada, C., Nevitt, T. & Menezes, R. The yeast stress response. Role of the Yap family of b-ZIP transcription factors. The FEBS J. 272, 2639–2647. https://doi.org/10.1111/j.1742-4658.2005.04695.x (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elfving, N. et al. A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress. Nucleic Acids Res. 42, 5468–5482. https://doi.org/10.1093/nar/gku176 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Święciło, A. Cross-stress resistance in Saccharomyces cerevisiae yeast-new insight into an old phenomenon. Cell Stress Chaperon. 21, 187–200. https://doi.org/10.1007/s12192-016-0667-7 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zakrzewska, A. et al. Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness. Mol. Biol. Cell 22, 4435–4446. https://doi.org/10.1091/mbc.E10-08-0721 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bishayee, A., Rao, D. V., Bouchet, L. G., Bolch, W. E. & Howell, R. W. Protection by DMSO against cell death caused by intracellularly localized iodine-125, iodine-131 and polonium-210. Radiat. Res. 153, 416–427 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hubalek, Z. Protectants used in the cryopreservation of microorganisms. Cryobiology 46, 205–229. https://doi.org/10.1016/S0011-2240(03)00046-4 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X., Wang, Y. K., Song, Z. Q., Du, Z. Q. & Yang, C. X. Dimethyl sulfoxide perturbs cell cycle progression and spindle organization in porcine meiotic oocytes. PLoS ONE 11, e0158074. https://doi.org/10.1371/journal.pone.0158074 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tunçer, S. et al. Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes. Sci. Rep. 8, 14828. https://doi.org/10.1038/s41598-018-33234-z (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gallardo-Villagrán, M., Paulus, L., Leger, D. Y., Therrien, B. & Liagre, B. Dimethyl sulfoxide: A bio-friendly or bio-hazard chemical? The effect of DMSO in human fibroblast-like synoviocytes. Molecules 27, 4472. https://doi.org/10.3390/molecules27144472 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, C. et al. Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes. PLoS ONE 9, e107447. https://doi.org/10.1371/journal.pone.0107447 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gironi, B. et al. Effect of DMSO on the mechanical and structural properties of model and biological membranes. Biophys. J. 119, 274–286. https://doi.org/10.1016/j.bpj.2020.05.037 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Ménorval, M. A., Mir, L. M., Fernández, M. L. & Reigada, R. Effects of dimethyl sulfoxide in cholesterol-containing lipid membranes: A comparative study of experiments in silico and with cells. PLoS ONE 7, e41733. https://doi.org/10.1371/journal.pone.0041733 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nilsson, A. & Nielsen, J. Metabolic trade-offs in yeast are caused by F1F0-ATP synthase. Sci. Rep. 6, 22264. https://doi.org/10.1038/srep22264 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drakulic, T. et al. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 5, 1215–1228. https://doi.org/10.1016/j.femsyr.2005.06.001 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Herrero, E., Ros, J., Bellí, G. & Cabiscol, E. Redox control and oxidative stress in yeast cells. Biochim. Biophys. Acta 1780, 1217–1235. https://doi.org/10.1016/j.bbagen.2007.12.004 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stratford, M., Vallières, C., Geoghegan, I. A., Archer, D. B. & Avery, S. V. The preservative sorbic acid targets respiration, explaining the resistance of fermentative spoilage yeast species. mSphere 5, e00273-20. https://doi.org/10.1128/mSphere.00273-20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barakat, R., Goubet, I., Manon, S., Bergès, T. & Rosenfeld, E. Unsuspected pyocyanin effect in yeast under anaerobiosis. MicrobiologyOpen 3, 1–14. https://doi.org/10.1002/mbo3.142 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Phetruen, T., van Dam, B. & Chanarat, S. Andrographolide induces ROS-mediated cytotoxicity, lipid peroxidation, and compromised cell integrity in Saccharomyces cerevisiae. Antioxidants 12, 1765. https://doi.org/10.3390/antiox12091765 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewinska, A. & Bartosz, G. A role for yeast glutaredoxin genes in selenite-mediated oxidative stress. Fungal Genet. Biol. 45, 1182–1187. https://doi.org/10.1016/j.fgb.2008.05.011 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dickinson, Q. et al. Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. Microb. Cell Fact. 15, 17. https://doi.org/10.1186/s12934-016-0417-7 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sousa, C. A. & Soares, E. V. Mitochondria are the main source and one of the targets of Pb (lead)-induced oxidative stress in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 98, 5153–5160. https://doi.org/10.1007/s00253-014-5631-9 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Święciło, A. Effect of sodium nitrate (V) on Saccharomyces cerevisiae strains of different antioxidative status and energetic metabolism. Pol. J. Food Nutr. Sci. 58, 41–44 (2008).

    Google Scholar 

  • Gibson, B. R., Lawrence, S. J., Leclaire, J. P., Powell, C. D. & Smart, K. A. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol. Rev. 31, 535–569. https://doi.org/10.1111/j.1574-6976.2007.00076.x (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lai, L. C., Kosorukoff, A. L., Burke, P. V. & Kwast, K. E. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: Differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media. Mol. Cell Biol. 25, 4075–4091. https://doi.org/10.1128/MCB.25.10.4075-4091.2005 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verghese, J., Abrams, J., Wang, Y. & Morano, K. A. Biology of the heat shock response and protein chaperones: Budding yeast (Saccharomyces cerevisiae) as a model system Microbiol. Mol. Biol. Rev. 76, 115–158. https://doi.org/10.1128/MMBR.05018-11 (2012).

    Article 
    CAS 

    Google Scholar 

  • Auesukaree, C. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J. Biosci. Bioeng. 124, 133–142. https://doi.org/10.1016/j.jbiosc.2017.03.009 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rintala, E. et al. Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMC Genom. 10, 461. https://doi.org/10.1186/1471-2164-10-461 (2009).

    Article 
    CAS 

    Google Scholar 

  • Aceituno, F. F. et al. Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions. Appl. Environ. Microbiol. 78, 8340–8352. https://doi.org/10.1128/AEM.02305-12 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jouhten, P. et al. Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113–1A. BMC Syst. Biol. 2, 60. https://doi.org/10.1186/1752-0509-2-60 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spickett, C. M., Smirnoff, N. & Pitt, A. R. The biosynthesis of erythroascorbate in Saccharomyces cerevisiae and its role as an antioxidant. Free Radic. Biol. Med. 28, 183–192. https://doi.org/10.1016/S0891-5849(99)00214-2 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, M. J. et al. An antioxidant screening assay based on oxidant-induced growth arrest in Saccharomyces cerevisiae. FEMS Yeast Res. 11, 379–387. https://doi.org/10.1111/j.1567-1364.2011.00726.x (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Branduardi, P. et al. Biosynthesis of vitamin C by yeast leads to increased stress resistance. PLoS ONE 2, e1092. https://doi.org/10.1371/journal.pone.0001092 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pérez-Gallardo, R. V. et al. Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. FEMS Yeast Res. 13, 804–819. https://doi.org/10.1111/1567-1364.12090 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Navrátilová, A., Kovár, M. & Požgajová, M. Ascorbic acid mitigates cadmium-induced stress, and contributes to ionome stabilization in fission yeast. Environ. Sci. Pollut. Res. Int. 28, 15380–15393. https://doi.org/10.1007/s11356-020-11480-x (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Palozza, P. & Krinsky, N. I. Antioxidant effects of carotenoids in vivo and in vitro: An overview. Methods Enzymol. 213, 403–420. https://doi.org/10.1016/0076-6879(92)13142-k (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Przybyło, M. & Langner, M. On the physiological and cellular homeostasis of ascorbate. Cell. Mol. Biol. Lett. 25, 32. https://doi.org/10.1186/s11658-020-00223-y (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krzepiłko, A. & Święciło, A. Do antioxidants counteract the toxic effects of pyrethroids on Saccharomyces cerevisiae yeast? Ecol. Chem. Eng. A 16, 1171–1178 (2009).

    Google Scholar 

  • Biliński, T., Lukaszkiewicz, J. & Sledziewski, A. Demonstration of anaerobic catalase synthesis in the cz1 mutant of Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 83, 1225–1233. https://doi.org/10.1016/0006-291X(78)91525-5 (1978).

    Article 
    PubMed 

    Google Scholar 

  • Jiménez, A. et al. The biological activity of the wine anthocyanins delphinidin and petunidin is mediated through Msn2 and Msn4 in Saccharomyces cerevisiae. FEMS Yeast Res. 10, 858–869. https://doi.org/10.1111/j.1567-1364.2010.00679.x (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sherman, F., Fink, G. R. & Hicks, J. B. Methods in Yeast Genetics: A Laboratory Manual. Plainview. NY, Cold Spring Harbor Laboratory Press, pp. 256 (1994).

  • Święciło, A. & Rybczyńska-Tkaczyk, K. Resazurin method for evaluation of bioactive compounds from cranberry extracts using the metabolic activity of a Δsod1 mutant of Saccharomyces cerevisiae yeast under severe osmotic stress. J. AOAC Int. 103, 422–427. https://doi.org/10.5740/jaoacint.19-0264 (2020).

    Article 
    PubMed 

    Google Scholar 

  • O’Brien, J., Wilson, I., Orton, T. & Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity: Resazurin as a cytotoxicity assay. Eur. J. Biochem. 267, 5421–5426. https://doi.org/10.1046/j.1432-1327.2000.01606.x (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wieser, R. et al. Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J. Biol. Chem. 266, 12406–12411 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beers, R. F. & Sizer, J. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133–138 (1952).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bradford, M. M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martins, D. & English, A. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast. Redox Biol. 2, 308–313. https://doi.org/10.1016/j.redox.2013.12.019 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Piechowiak, T. & Balawejder, M. Onion skin extract as a protective agent against oxidative stress in Saccharomyces cerevisiae induced by cadmium. J. Food Biochem. 43, e12872. https://doi.org/10.1111/jfbc.12872 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Konuk, H. & Ergüden, B. Antifungal activity of various essential oils against Saccharomyces cerevisiae depends on disruption of cell membrane integrity. BIOCELL 41, 13–18. https://doi.org/10.32604/biocell.2017.41.013 (2017).

  • Li, C. et al. Analysis of the tendency for the electronic conductivity to change during alcoholic fermentation. Sci. Rep. 9, 5512. https://doi.org/10.1038/s41598-019-41225-x (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saffi, J., Sonego, L., Varela, Q. D. & Salvador, M. Antioxidant activity of L-ascorbic acid in wild-type and superoxide dismutase deficient strains of Saccharomyces cerevisiae. Redox Rep. 11, 179–184. https://doi.org/10.1179/135100006X116691 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Święciło, A. et al. Application of growth tests employing a ∆sod1 mutant of Saccharomyces cerevisiae to study the antioxidant activity of berry fruit extracts. LWT-Food Sci. Technol. 92, 96–102. https://doi.org/10.1016/j.lwt.2018.04.046 (2018).

    Article 
    CAS 

    Google Scholar 

  • Check out our other content

    Most Popular Articles