Friday, April 19, 2024

The transcription of the main gene associated with Treacher–Collins syndrome (TCOF1) is regulated by G-quadruplexes and cellular nucleic acid binding protein (CNBP)

BiochemistryThe transcription of the main gene associated with Treacher–Collins syndrome (TCOF1) is regulated by G-quadruplexes and cellular nucleic acid binding protein (CNBP)


  • Kadakia, S., Helman, S. N., Badhey, A. K., Saman, M. & Ducic, Y. Treacher Collins syndrome: The genetics of a craniofacial disease. Int. J. Pediatr. Otorhinolaryngol. 78, 893–898 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Chang, C. C. & Steinbacher, D. M. Treacher Collins syndrome. Semin. Plast. Surg. 26, 83–90 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Falcon, K. T. et al. Dynamic regulation and requirement for ribosomal RNA transcription during mammalian development. Proc. Natl. Acad. Sci. USA 119, e2116974119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yelick, P. C. & Trainor, P. A. Ribosomopathies: Global process, tissue specific defects. Rare Dis. 3, e1025185 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calo, E. et al. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders. Nature 554, 112–117 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Peralta, M. S. P. et al. Cnbp ameliorates Treacher Collins syndrome craniofacial anomalies through a pathway that involves redox-responsive genes. Cell Death Dis. 7, e2397 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosas, M. G., Lorenzatti, A., Porcel de Peralta, M. S., Calcaterra, N. B. & Coux, G. Proteasomal inhibition attenuates craniofacial malformations in a zebrafish model of Treacher Collins Syndrome. Biochem. Pharmacol. 163, 362–370 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Armas, P., Coux, G., Weiner, A. M. J. & Calcaterra, N. B. What’s new about CNBP? Divergent functions and activities for a conserved nucleic acid binding protein. Biochim. Biophys. Acta Gen. Subj. 1865, 129996 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • David, A. P. et al. CNBP controls transcription by unfolding DNA G-quadruplex structures. Nucleic Acids Res. 47, 7901–7913 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benhalevy, D. et al. The human CCHC-type zinc finger nucleic acid-binding protein binds G-rich elements in target mRNA coding sequences and promotes translation. Cell Rep. 18, 2979–2990 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weiner, A. M. J., Allende, M. L., Becker, T. S. & Calcaterra, N. B. CNBP mediates neural crest cell expansion by controlling cell proliferation and cell survival during rostral head development. J. Cell. Biochem. 102, 1553–1570 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, W. et al. The zinc-finger protein CNBP is required for forebrain formation in the mouse. Development 130, 1367–1379 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abe, Y., Chen, W., Huang, W., Nishino, M. & Li, Y. P. CNBP regulates forebrain formation at organogenesis stage in chick embryos. Dev. Biol. 295, 116–127 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Margarit, E., Armas, P., García Siburu, N. & Calcaterra, N. B. CNBP modulates the transcription of Wnt signaling pathway components. Biochim. Biophys. Acta Gene Regul. Mech. 1839, 1151–1160 (2014).

    Article 
    CAS 

    Google Scholar 

  • Huppert, J. L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumari, S., Bugaut, A., Huppert, J. L. & Balasubramanian, S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat. Chem. Biol. 3(4), 218–221. https://doi.org/10.1038/nchembio864 (2007). PMID: 17322877; PMCID: PMC2206252.

    Google Scholar 

  • Gilbert, D. E. & Feigon, J. Multistranded DNA structures. Curr. Opin. Struct. Biol. 9, 305–314 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hänsel-Hertsch, R. et al. G-quadruplex structures mark human regulatory chromatin. Nat. Genet. 48, 1267–1272 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Chambers, V. S. et al. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 33, 877–881 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • David, A. P. et al. G-quadruplexes as novel cis-elements controlling transcription during embryonic development. Nucleic Acids Res. 44, 4163–4173 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiang, L. et al. DNA G-quadruplex structure participates in regulation of lipid metabolism through acyl-CoA binding protein. Nucleic Acids Res. 50, 6953–6967 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niu, K. et al. Identification of LARK as a novel and conserved G-quadruplex binding protein in invertebrates and vertebrates. Nucleic Acids Res. 47, 7306–7320 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Armas, P., Margarit, E., Mouguelar, V. S., Allende, M. L. & Calcaterra, N. B. Beyond the binding site: In vivo identification of tbx2, smarca5 and wnt5b as molecular targets of CNBP during embryonic development. PLoS One 8, e63234 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mogass, M., York, T. P., Li, L., Rujirabanjerd, S. & Shiang, R. Genomewide analysis of gene expression associated with Tcof1 in mouse neuroblastoma. Biochem. Biophys. Res. Commun. 325, 124–132 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bezzi, G., Piga, E. J., Binolfi, A. & Armas, P. Cnbp binds and unfolds in vitro g-quadruplexes formed in the SARS-CoV-2 positive and negative genome strands. Int. J. Mol. Sci. 22, 1–22 (2021).

    Article 

    Google Scholar 

  • Kikin, O., D’Antonio, L. & Bagga, P. S. QGRS Mapper: A web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 34, W676–W682 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dao, N. T., Haselsberger, R., Michel-Beyerle, M. E. & Phan, A. T. Following G-quadruplex formation by its intrinsic fluorescence. FEBS Lett. 585, 3969–3977 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Kypr, J., Kejnovská, I., Renčiuk, D. & Vorlíčková, M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 37, 1713–1725 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Challier, E., Lisa, M.-N., Nerli, B. B., Calcaterra, N. B. N. B. & Armas, P. Novel high-performance purification protocol of recombinant CNBP suitable for biochemical and biophysical characterization. Protein Expr. Purif. 93, 23–31 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lejault, P. et al. Regulation of autophagy by DNA G-quadruplexes. Autophagy 16, 2252–2259 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moruno-Manchon, J. F. et al. The G-quadruplex DNA stabilizing drug pyridostatin promotes DNA damage and downregulates transcription of Brca1 in neurons. Aging (Albany, NY) 9, 1957–1970 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feng, Y. et al. Stabilization of G-quadruplex DNA and inhibition of Bcl-2 expression by a pyridostatin analog. Bioorg. Med. Chem. Lett. 26, 1660–1663 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zyner, K. G. et al. Genetic interactions of G-quadruplexes in humans. Elife 8, 1–40 (2019).

    Article 

    Google Scholar 

  • Roy, A. et al. Identification and characterization of a flexile G-quadruplex in the distal promoter region of stemness gene REX1. Int. J. Biol. Macromol. 231, 123263 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weiner, A. M. J., Coux, G., Armas, P. & Calcaterra, N. Insights into vertebrate head development: From cranial neural crest to the modelling of neurocristopathies. Int. J. Dev. Biol. https://doi.org/10.1387/ijdb.200229nc (2020).

    Article 

    Google Scholar 

  • Dixon, J. et al. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc. Natl. Acad. Sci. USA 103, 13403–13408 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, N. C. et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat. Med. 14, 125–133 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sakai, D., Dixon, J., Achilleos, A., Dixon, M. & Trainor, P. A. Prevention of Treacher Collins syndrome craniofacial anomalies in mouse models via maternal antioxidant supplementation. Nat. Commun. 7, 10328 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fitriasari, S. & Trainor, P. A. Diabetes, oxidative stress, and DNA damage modulate cranial neural crest cell development and the phenotype variability of craniofacial disorders. Front. Cell Dev. Biol. 9, 644410 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masotti, C. et al. A functional SNP in the promoter region of TCOF1 is associated with reduced gene expression and YY1 DNA-protein interaction. Gene 359, 44–52 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shows, K. H. & Shiang, R. Regulation of the mouse Treacher Collins syndrome homolog (Tcof1) promoter through differential repression of constitutive expression. DNA Cell Biol. 27, 589–600 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hänsel-Hertsch, R., Spiegel, J., Marsico, G., Tannahill, D. & Balasubramanian, S. Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat. Protoc. 13, 551–564 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Varshney, D., Spiegel, J., Zyner, K., Tannahill, D. & Balasubramanian, S. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. 21, 459–474 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, C., Liu, H. H., Zheng, K. W., Hao, Y. H. & Tan, Z. DNA G-quadruplex formation in response to remote downstream transcription activity: Long-range sensing and signal transducing in DNA double helix. Nucleic Acids Res. 41, 7144–7152 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ray, S. et al. Custom DNA microarrays reveal diverse binding preferences of proteins and small molecules to thousands of G-quadruplexes. ACS Chem. Biol. 15, 925–935 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pipier, A. et al. Constrained G4 structures unveil topology specificity of known and new G4 binding proteins. Sci. Rep. 11, 1–15 (2021).

    Article 

    Google Scholar 

  • Chen, S. et al. Mechanistic studies for the role of cellular nucleic-acid-binding protein (CNBP) in regulation of c-myc transcription. Biochim. Biophys. Acta Gen. Subj. 1830, 4769–4777 (2013).

    Article 
    CAS 

    Google Scholar 

  • Guo, Y. et al. Upregulation of lncRNA SUMO1P3 promotes proliferation, invasion and drug resistance in gastric cancer through interacting with the CNBP protein. RSC Adv. 10, 6006–6016 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, L., Zhang, P., Li, J. & Wu, M. LAST, a c-Myc-inducible long noncoding RNA, cooperates with CNBP to promote CCND1 mRNA stability in human cells. Elife https://doi.org/10.7554/eLife.30433.001 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grzanka, M. & Piekiełko-Witkowska, A. The Role of TCOF1 gene in health and disease: Beyond Treacher Collins syndrome. Int. J. Mol. Sci. 22, 1–19 (2021).

    Article 

    Google Scholar 

  • Wang, Y. et al. The distinct roles of zinc finger CCHC-type (ZCCHC) superfamily proteins in the regulation of RNA metabolism. RNA Biol. 18, 2107–2126 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maizels, N. & Gray, L. T. The G4 Genome. PLoS Genet. 9, e1003468 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y.-H. et al. G4LDB 2.2: A database for discovering and studying G-quadruplex and i-Motif ligands. Nucleic Acids Res. 50, D150–D160 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alessandrini, I., Recagni, M., Zaffaroni, N. & Folini, M. Molecular sciences on the road to fight cancer: The potential of G-quadruplex ligands as novel therapeutic agents. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22115947 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Awadasseid, A., Ma, X., Wu, Y. & Zhang, W. NC-ND license G-quadruplex stabilization via small-molecules as a potential anti-cancer strategy. Biomed. Pharmacother. https://doi.org/10.1016/j.biopha.2021.111550 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, C. et al. TCOF1 coordinates oncogenic activation and rRNA production and promotes tumorigenesis in HCC. Cancer Sci. 113, 553–564 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sharma, T., Kundu, N., Sarvpreet Kaur, Shankaraswamy, J. & Saxena, S. Why to target G-quadruplexes using peptides: Next-generation G4-interacting ligands. J. Pept. Sci. https://doi.org/10.1002/psc.3491 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Bedrat, A., Lacroix, L. & Mergny, J. L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 44, 1746–1759 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME suite. Nucleic Acids Res. 43, 39–49 (2015).

    Article 

    Google Scholar 

  • Rachwal, P. A. & Fox, K. R. Quadruplex melting. Methods 43, 291–301 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tuma, R. S. et al. Characterization of SYBR gold nucleic acid gel stain: A dye optimized for use with 300-nm ultraviolet transilluminators. Anal. Biochem. 268, 278–288 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van Den Ent, F. & Löwe, J. RF cloning: A restriction-free method for inserting target genes into plasmids. J. Biochem. Biophys. Methods 67, 67–74 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Jordan, M., Köhne, C. & Wurm, F. M. Calcium-phosphate mediated DNA transfer into HEK-293 cells in suspension: Control of physicochemical parameters allows transfection in stirred media: Transfection and protein expression in mammalian cells. Cytotechnology 26, 39–47 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bustin, S. A. & Wittwer, C. T. MIQE: A step toward more robust and reproducible quantitative PCR. Clin. Chem. 63, 1537–1538 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Check out our other content

    Most Popular Articles